Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10137
DC FieldValueLanguage
dc.contributor薛富盛zh_TW
dc.contributor蔡哲正zh_TW
dc.contributor.advisor張立信zh_TW
dc.contributor.author江晏瑜zh_TW
dc.contributor.authorJiang, Yan-Yuen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:44:16Z-
dc.date.available2014-06-06T06:44:16Z-
dc.identifierU0005-0707200616374600zh_TW
dc.identifier.citation[1] 朱旭山,“熱電材料與元件之原理與應用”,工業材料雜誌 93 (1995) 93-103。 [2] K. Hasezaki, H. Tsukuda, A. Yamada, S. Nakajima, Y. Kang, M. Niino,“Thermoelectric Semiconductor and Electrode-Fabrication and Evaluation of SiGe/Electrode”, International Conference on Thermoelectrics 16 (1997) 599-602 [3] O. Yamashita, H. Odahara, S. Tomiyoshi,“Effect of metal electrode on thermoelectric power in bismuth telluride compounds”, Journal of Materials Science 39 (2004) 5653 – 5658 [4] Z. Wang, D.B. Aldrich, Y.L. Chen, D.E. Sayers, R.J. Nemanich,“Silicide formation and stability of Ti/SiGe and Co/SiGe”, Thin Solid Films 270 (1995) 555-560. [5] C. Williams, H. F.Lopez,“Stability of chromium diffusion barriers during anodic bonding in silicon resistor devices”, Journal of Materials Science 12 (2001) 739-742 [6] D. Callister, Materials Science and Engineering an Introduction , Department of Metallurgical Engineering of Utah University, 2000, pp. 817-822 [7] P. L. Tu, Y. C. Chan, J. K. L. Lai,“Effect of Intermetallic Compounds on the Thermal Fatigue of Surface Mount Solder Joint”, IEEE Transactions on Components, Packaging, and Manufacturing Technology B 20 (1997) 87-93 [8] T. Murotani, T. Yano, H. Hirose, A. Ikenaga,“Applications of X-ray stress measurement for interface area of Ni3Al system intermetallic compound coating”, Advances in X-ray Analysis 47 (2004) 385-389. [9] 李忠明 ,“鋁摻雜鐵矽粉末於氮氫混合氣氛熱處理後之特性分析”,碩士論文,國立中興大學材料科學與工程研究所,台中, 2007, pp. 16-18。 [10] N. Danson, I. Safi, G. W. Hall, R. D. Howson,“Techniques for the sputtering of optimum indium-tin oxide films on to room temperature substrates”, Surf. Coat. Technol. 99 (1998) 147-160 [11] N. Lundberg, M. Ostling, F.M. d’Heurle,“Chromium germanides: formation, structure and properties”, Applied Surface Science 53 (1991) 126-131. [12] S.P. Gupta,“Formation of intermetallic compounds in the Cr–Al–Si”, Materials Characterization 52 (2004) 355– 370zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10137-
dc.description.abstractThe silicon germanium is well known as one of the best thermoelectric materials under the high-temperature environment. However, whether a thermoelectric device performs well or not is strongly related to the property of its electrode. In this research, chromium metal, used as the electrode, is jointed with silicon germanium alloy. The research goal is to understand the interfacial compound formation during joining silicon germanium and chromium, such as the composition, structure of compound, and activation energy of compound growth. In this study, the bulk of silicon germanium alloy was processed by vacuum arc melting, and then joined with chromium by hot pressing. The microstructure, composition and crystalline structure were determined by means of scanning electron microscopy, electron probe microanalysis and X-ray diffraction, respectively. Finally, the average thickness was measured and activation energy of formation was computed. The results showed that the intermetallic compounds formed are Cr3Ge, Cr(Six Ge1-x)3 and CrSi2, and the activation energy of growth were calculated. The possible reasons for the defect formation and the growing sequence are also conjectured.en_US
dc.description.abstract矽鍺是高溫環境下表現的最好的熱電材料,然而ㄧ個熱電材料需要電極材料與其搭配才能發揮良好的熱電性質。研究中探討接合矽鍺與鉻時發生的界面化合物生成,了解化合物成分、結構、以及生長活化能等等。本研究以真空熔煉製備矽鍺塊材並以熱壓法接合矽鍺塊材與鉻金屬。性質分析方面分別由場發射掃描式電子顯微鏡觀察金相、電子探測光顯微分析分析成分、X光繞射儀做相鑑定,再由厚度量測得到成長活化能。本研究成果可得知接合後的化合物成長結構,並確認化合物成分分別為Cr3Ge、Cr(Six Ge1-x)3、CrSi2並計算化合物的厚度變化、成長活化能。研究中並推測缺陷成因與化合物成長順序。zh_TW
dc.description.tableofcontents第一章 前言 1 第二章 背景與回顧 3 2.1 電極材料 3 2.1.1 鎢 3 2.1.2 銅 3 2.1.3 石墨 4 2.1.4 鈦 4 2.1.5 鉻 4 2.2 熱壓接合 7 2.3 中間相化合物 8 2.4 成長速度與活化能的關係 10 2.5 熔煉原理 12 第三章 實驗方法 14 3.1 實驗流程 14 3.2 實驗方法 15 3.2.1 材料準備 15 3.2.2 真空熔煉 15 3.2.3 切割、研磨、拋光 18 3.2.4 熱壓接合 18 3.2.5 分析前準備 21 3.3 材料分析 21 3.3.1 SEM金相觀察 21 3.3.2 EPMA成分分析 22 3.3.3 XRD結構分析 23 第四章 結果與討論 24 4.1 界面金相觀察 24 4.2 EPMA 27 4.2.1 A層化合物 27 4.2.2 B層化合物 28 4.2.3 C層化合物 29 4.2.4 D層化合物 30 4.2.5 基材的成分分析 36 4.3 XRD: 37 4.3.1 A層化合物 40 4.3.2 B層化合物 40 4.3.3 C層化合物 41 4.3.4 D層化合物 41 4.4 厚度變化與活化能計算 42 第五章 結論 46 附錄 50zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0707200616374600en_US
dc.subjectsilicon germaniumen_US
dc.subject矽鍺zh_TW
dc.subjectthermoelectricen_US
dc.subjectchromium electrodeen_US
dc.subjecthot pressingen_US
dc.subjectcompounden_US
dc.subject熱電zh_TW
dc.subject鉻電極zh_TW
dc.subject熱壓法zh_TW
dc.subject化合物zh_TW
dc.titleInterfacial compound formation between silicon germanium alloy and chromium during diffusion bondingen_US
dc.title矽鍺合金與鉻在擴散接合間的界面化合物生成zh_TW
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.