Please use this identifier to cite or link to this item:
標題: 加強型電容耦合式高密度電漿在非晶矽薄膜電晶體蝕刻研究
Fabrication of A-Si Thin Film Transistor through an Enhanced Capacitive-Coupled High-Density Plasma Etcher
作者: 林明達
Lin, Min-Ta
關鍵字: Enhanced Capacitive-Coupled High-Density Plasma;加強型電容耦合式高密度電漿;Dry Etch;A-Si Thin Film;乾蝕刻;非晶矽薄膜
出版社: 材料科學與工程學系所
引用: [1] 黃素真,”液晶顯示器”,科學發展雜誌,第349期,P.30-37,Jan 2002 [2] 影像顯示科技知識平台,液晶顯示器種類,http :// [3] T. Tsukada, in Technology and Applications of Amorphous Silicon, R. A. Street, Ed Berlin Heidelberg, pp.7-89, Spring, 2000. [4] Chih-Wen Lu “A New Rail-To-Rail Driving Scheme And A Low-Power High-Speed Output Buffer Amplifier For AMLCD Column Driving Application”, IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, pp. I-229~I-232 May 25-28, 2003. [5] Chih-Wen Lu and Chung Len Lee ,“A Low-Power High-Speed Class-AB Buffer Amplifier for Flat-Panel-Display Application”, IEEE TRANSACTIONS ON VERY LARGE INTEGRATION(VLSI) SYSTEMS, vol. 10, NO.2, APRIL 2002. [6] C. O. William, “Liquid crystal flat panel display”, in manufacturing science & technology, 1ST. Ed., Van Nostrand Reinhold, 1993, Chap. 2 [7] 龍柏華,濕蝕刻製程介紹兼機台原理簡介,光連:光電產業與技術情報,48期,PP.37-41,2003。 [8] M. J. Powell, “The Physics Of A-Si TFTs”, IEEE Trans. Electron Devices, vol.36, no.12, pp.2753-2763, 1989. [9] J. J Chang et al, IDMC ‘02, pp.77, 2002. [10] Y. Kuo, “Thin Film Transistors, Materials And Processes Volume 1: Amorphous Silicon Thin Film Transistors,” pp.293-302, 2004. [11] Genichi Taguchi (Yuin Wu, technical editor for the English edition), Taguchi Methods / Design of Experiments, Dearborn MI / ASI Press, Tokyo. [12] Alan Wu, Robust Design Using Taguchi Methods, Workshop Manual, American Supplier Institute (ASI), Version 3.0, 2001. [13] Young D.Lee, H. Y. Chang, and C. S. Chang “Si etching rate calculation for low pressure high density plasma source Cl2 gas”, J.Vac. Sci. Techol. A 18(5), pp.2224-2229, Sep/Oct 2000. [14] Paul Werbaneth and John Alrnetico, “STI etch in Cl2-Ar plasma”, solid state technology, pp.87-92, Dec 2000. [15] J. P. Novak and M. F Frechette, “Transport coefficients of SF6 and SF6-N2 mixtures form revised data”, J. Appl. Phys, vol.55, pp. 107, 1984. [16] H. M. Anderson, J. A. Merson, R. W. and Light, “A Kinetic model for plasma etching in a SF6/O2 RF discharge”, IEEE Trans. Plasma Sci., vol.14, pp.156, 1986. [17] D. Edelson and D. L. Flamm, “Computer simulation of a CF4 plasma etching silicon”, J. Appl. Phys. vol.56, pp.15-22, 1984. [18] L. Polak and Y. A. Lebedev, Eds., “Plasma Chemistry Cambridge, UK: Cambridge International Science Principles of Plasma Discharge and Materials Processing”, M. A. Lieberman and A. J. Lichtenberg, Eds. New York: Wiley, 1994. [19] R. J. Van Brunt and J. T. Herron, “Plasma chemical model for decomposition of SF6 in a negative glow corona discharge”, Physica Scripta, vol.53, pp.9, 1994. [20] J. B. Belhaouari, J. S. Gonzales, and A. Gleizes, “Simulation of a decaying SF6 arc plasma: hydrodynamics and kinetics aoupling study,” J. Phys. D, vol.31, pp312-19, 1998. [21] J. T. Herron and R. J. Van Brunt, “Zonal model for corona discharge-induced oxidation of SF6 in SF6/O2/H2O gas mixtures”, Proc. 9th Int. Symp. On Plasma Chemistry, University of Bari, Italy, 1989. [22] Orlando Auciello, Daniel L. Flamm, “Plasma Diagnostics: Surface Analysis and Interactions (Plasma-Materials and Interactions)” Academic Press, 1989. [23] 徐重仁,“電感式電漿源之光譜量測與分析”,國立清華大學碩 士論文,1999 [24] 汪建民,材料分析,中國材料科學學會,台灣,1998。 [25] AU Optronics Corp.,TFT-LCD製程介紹, [26] A. S. Hedayat, N. J. A. Sloane, and John Stufken, Orthogonal Arrays : Theory and Applicatons, 1999, Springer, New York. [27] R. Patrick et al, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Volume 18, Issue 2, pp. 405-410, 2000.
本論文主要是利用電漿蝕刻技術應用於薄膜液晶顯示器蝕刻製程,利用加強型耦合式電漿系統來探討非晶矽蝕刻結構。主要操作參數為高頻射頻電漿源功率、低頻射頻電漿源功率、He、SF6製程氣體流量、腔體壓力。研究內容包括探討對蝕刻速率、均勻性的影響、蝕刻介面生成物變化與蝕刻傾斜角的變化,利用田口實驗設計法分析各參數的影響,最後提出最佳解為腔體壓力:20 mTorr、高頻射頻功率:9kW、低頻射頻功率:12kW、Cl2氣體流量:3600 sccm、SF6氣體流量:450 sccm、He氣體流量:1000 sccm。

This thesis is used plasma etching technology for TFT LCD etching process, using the ECCP system to investigate the structure of a-Si. The main parameters used in these experiments were RF source power, RF bias power, SF6, He gas flow rates, chamber pressure. The study included the etching rate, uniformity, the product reaction and taper angle. Taguchi experimental design method to analyze the parameters, and finally proposes the optimal solution for the chamber pressure: 20mTorr, RF Source power: 9kW, RF Bias power: 12kW, Cl2 gas flow: 3600sccm, SF6 gas flow: 450sccm, He gas flow : 1000sccm.
In order to solve the above problem, the systematic experimental data analysis was performed to determine the characteristic factors more efficiently. The experimental results, can be found the important factors for etching characteristics. Increase in chamber pressure makes worse to the etching angle, better to the etching uniformity. The main point of the etching angle is to selected chamber pressure in 20mT. Low frequency RF plasma source power 12000W is the best way for RF plasma source. The higher frequency RF plasma source power more intense bombardment to etching makes it possible to more effectively break Si-N bonds increase to the etching rate. Low power must be higher than the high-frequency power, it was the solution for the high-frequency RF plasma source power of 9000W, low frequency RF plasma source power is 12000W. SF6 etching gas flow rate increases makes worse to the etching angle, better to the etching uniformity. Have to take into account the main point of the etching uniformity SF6 gas flow was chosen as 450sccm. He was found in the experimental analysis was chosen for the not important factor for the 1000sccm.
其他識別: U0005-1107201110323200
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.