Please use this identifier to cite or link to this item:
標題: Preparation of TiN thin films by physical vapor deposition using air/Ar mixtures
作者: Yang, Chun-Hui
關鍵字: PVD;物理氣相沈積法;TiN;air;DSSC;dye-sensitization solar cells;氮化鈦;空氣;太陽電池
出版社: 材料科學與工程學系所
引用: [1] P. R. Crawford, “Titanium-the metal of the gods”, J. Can. Dent. Assoc., 58 (1992) 568. [2] H. E. Hintermann, “ Thin solid films to combat friction, wear, and corrosion”, J. Vac. Sci. Technol. B, 2 (1984) 816. [3] D. Su Lee, H. J. Woo, D. Y. Park, J. Ha, C. S. Hwang, and E. Yoon “Effects of the microstructure of platinum electrode on the oxidation behavior of TiN diffusion barrier layer”, Jpn. J. Appl. Phys., 42 (2003) 630. [4] Y. X. Leng, J. Y. Chen, P. Yang, J. Wang, A. S. Zhao, G. J. Wan, H. Sun, and N. Huang, “The microstructure and mechanical properties of TiN and TiO2/TiN duplex films synthesized by plasma immersion ion implantation and deposition on artificial heart valve”, Surf. Coat. Technol., 201 (2006) 1012. [5] J.H. Huang, K. W. Lau, and G. P. Yu, “Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin film by unbalanced magnetron sputtering”, Surf. Coat. Technol., 191 (2005)17. [6] W-J Chou, G-P Yu, and J-H Huang, “Corrosion behavior of TiN-coated 304 Stainless Steel”, Corros. Sci., 43 (2001) 2023. [7] F. Vaz, P. Cerqueira , L. Rebouta , S.M.C. Nascimento , E. Alves , Ph. Goudeau , J.P. Riviere , K. Pischow , and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films”, Thin Solid Films, 447–448 (2004) 449. [8] J. Schulz, H. Hohenberg, F. Pflücker, E. Gärtner, T. Will, S. Pfeiffer, R. Wepf, V. Wendel, H. G. Barlag, and K. P. Wittern, “Distribution of sunscreens on skin”, Advan. Drug. Deli. Rev., 1 (2002)157. [9] H. O. Pierson, Handbook of refractory carbides and nitrides, Noyes Publications, New Jersey, (1996). [10] J.-E. Sundgren, “ Structure and properties of TiN coatings”, Thin Solid Films, 128 (1985) 21. [11] A. Fujishima, K.Hashimoto, and T. Watanabe, TiO2 Photocatalysis fundamentals and applications, BCK, Inc. Japan Tokyo, (2001). [12] M. S. Wong, H. P. Chou, and T. S. Yang, “Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst”, Thin Solid Films, 494 (2006) 244. [13] B. O’Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353 (1991) 737. [14]肯尼金泰恩格,用以沉積金色氮化鈦之方法,中華民國專利公告號00370569(1999)。 [15]江柏風,氧對鈦與氮氣反應之影響,國立中興大學材料工程學研究所碩士論文,1998年。 [16] K. O. Ott, “Global warming and the greenhouse effect”, Progress in Nuclear Energy, 29 (1995) 81. [17] M. Tomkiewicz, “Global warming:science, money and self-preservation”, C. R. Chimie, 9 (2006) 172 [18] L. L. Kazmerski, “Photovoltaics: a review of cell and module technologies”, Renew. Sust. EnerG. Rev., 1 (1997) 71. [19] H. M. Mott-Smith, “Irving Langmuir''s coining of "plasma" was described by Harold M. Mott-Smith in a letter”, Nature, 233 (1971) 219. [20] A. Grill, Cold Plasma Materials Fabrication:From Fundamentals to Applications, Wiley-IEEE Press, New York, 1994. [21] J. L. Vossen and W. Kern, Thin Film Processes Ⅱ, Academic Press, New York, 1991. [22] R. V. Stuart, Vacuum Technology, Thin Films and Sputtering, Academic, New York, 1983. [23] B. Chapman, Glow Discharge Processes : Sputtering and plasma etching, John Wiley, New York, 1980. [24] W. R. Grove, “On some phenomena of the voltaic discharge”, The Philos. Mag., 16 (1840) 478. [25] D. S. Rickerby and A. Mattews, Advanced Surface Coatings, Chapman & Hall, New York, 1991. [26] L. Combadiere and J. Mactet, “Study and control of both target-poisoning mechanisms and reactive phenomenon in reactive planar magnetron cathodic sputtering of TiN”, Surf. Coat. Technol., 82 (1996) 145. [27] K. Elagli, M. Traisnel, and H. F. Hildebrand, “Electrochemical behaiour of titanium and dental alloy in artificial saliva”, Electrochim. Acta, 38 (1993) 1769. [28] A. Fujishima, R.X.Cai, J.Otsuki, K. Hashimoto, K. Itoh, T. Yamashita, Y. Kubota, “Biochemical application of photoelectrochemistry : Photokilling og malignant cells with TiO2 powder”, Electrochim. Acta, 41 (1993) 153. [29] H. Freller, P. Lorenz, “Electrochemically measured porosity of magnetron sputtered TiN films deposited at various substrate orientation”, J. Vac. Sci. Technol. A, 14 (1986) 2691. [30] 陳建任,PVD、CVD真空鍍膜設備專題研究,金屬中心高雄,1999年。 [31] B. Window and N.savvides, “Charged particle fluxes from planar magnetron sputtering sources”, J. Vac. Sci. Technol. A, 2 (1986) 196. [32] R. L. Boxman, D. M. Sanders, and P. J. Martin, Handbook of vacuum arc science & technology, Noyes Publication, New Jersey, 1995. [33] B. A. Movchan, and A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungaten, aluminum oxide and zirconium dioxide”, Powder Met.Metall., 28 (1969) 83. [34] J. A. Thornon, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol., 11 (1974) 666. [35] R. Messier, A. P. Giri, and A. R. Roy, “Revised structure zone model for thin films physical structure”, J. Vac. Sci. Technol., 2 (1984) 502. [36] R. D. Bland, G. J. Kominiak, and D. M. Mattox, “Effect of ion bombardment during deposition on thick metal and ceramic deposits”, J. Vac. Sci. Technol. A, 11 (1974) 671. [37] L.E. Toth, Transition metal carbides and netrides, Academic Press, New Jersey, 1971. [38] 汪建民,陶瓷技術手冊(下),中華民國冶金協會,1972年。 [39] H. A. Wriedt, J. L. Murray, “The N-Ti(Nitrogen-Titanium)system”, Bull. Alloy Phase Diagrams, 8 (1987) 378. [40] J. L. Murray, “Phase diagrams in binary titanium alloys”, ASM International, Materials Park, OH, (1990) 176. [41] C. Ziebert and S. Ulrich, “Hard multilayer coatings containing TiN and/or ZrN: A review and recentprogress in their nanoscale characterization”, J. Vac. Sci. Technol. A, 24 (2006) 554. [42] 邱紹賢,非平衡磁控濺鍍製程中氧氣流量對奈米晶氮氧化鈦薄膜合成及性質特徵之影響研究,國立清華大學工程與系統科學系,2005年。 [43] Y.L. Jeyachandran, Sa.K. Narayandass, D. Mangalaraj, Sami Areva and J.A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering”, Mater. Sci. Eng. A, 445-446 (2007) 223. [44] M. Ali, E. B. Hamzah, M. R. H.. M. Toff, “Deposition and characterization of TiN-coated steels at various N 2 gas flow rates with constant etching by using capvd technique”, Surf. Rev. Lett., 14 (2007) 93. [45] L. I. Wei and C. J.-Fang, Growth of TiN films at low temperature, Appl. Surf. Sci., 253 (2007) 7019. [46] Q. Zhang , Y.X. Leng, F. Qi, T. Tao, N. Huang, “Mechanical and corrosive behavior of Ti/TiN multilayer films with different modulation periods”, Nucl. Instrum. Methods Phys. Res., Sect. B, 257 (2007) 411. [47] A. Lousaa, J. Estevea, J.P. Mejiab, A. Deviab, “Influence of deposition pressure on the structural mechanical and decorative properties of TiN thin films deposited by cathodic arc evaporation”, Vacuum, 81 (2007) 1507. [48] A. Styervoyedov, V. Farenik, “Formation of Ti and TiN ultra-thin films on Si by ion beam sputter deposition”, Surface Science, 600 (2006) 3766. [49] F. Vaz, J. Ferreira, E. Ribeiro, L. Rebouta, S. L. Méndez, J. A. Mendes, E. Alves, Ph. Goudeau, J. P. Rivière, F. Ribeiro, I. Moutinho, K. Pischow and J. de Rijk, “Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films”, Surf. Coat. Technol., 191 (2005) 317. [50] Ning Jiang, H.J. Zhang, S.N. Bao, Y.G. Shen and Z.F. Zhou, “XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias”, Physica B, 352 (2004) 118. [51] S. G. Zotova, R. Kaltofen and T. Sebald, “DC reactive magnetron sputter deposition of (111) textured TiN films-influence of nitrogen flow and discharge power on the texture formation”, Surf. Coat. Technol., 127 (2000) 144. [52] S. Venkataraj, D. Severin, S.H. Mohamed, J. Ngaruiya, O. Kappertz and M. Wuttig, “Towards understanding the superior properties of transition metal oxynitrides prepared by reactive DC magnetron sputtering”, Thin Solid Films, 502 (2006) 228. [53] E. Alves, A. R. Ramos, N. P. Barradas, F. Vaz, P. Cerqueira, L. Rebouta and U. Kreissig, “Ion beam studies of TiNxOy thin films deposited by reactive magnetron sputtering”, Surf. Coat. Technol., 180-181 (2004) 372. [54] C. Rousselot and N. Martin, “Influence of two reactive gases on the instabilities of the reactive sputtering process”, Surf. Coat. Technol., 142-144 (2001) 206. [55] M. Grätzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338. [56] D. Cahen, G. Hodes, M. Grätzel, J. F. Gauillemoles, and I. Riess, “Nature of photovoltaic action in dye-sensitized sloar cells”, J. Phys.Chem. B, 104 (2000) 2053. [57] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel “Investigation of sensitizer adsorption and influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B, 107 (2003) 8981. [58] C. Klein, Md. Nazeeruddin, D. Di Censo, P. Liska, and M. Grätzel “Amphiphilic ruthenium sensitizers and their application in dye-sensitized solar cells”, Inorg. Chem., 43 (2004) 4216. [59] J. M. Macak, H. Tsuchiya, A. Ghicov, and P. Schmuki “Dye-sensitized anodic TiO2 nanotubes”, Electrochem. Commun., 7 (2005) 1133. [60] M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor,, B. Hardin, and C. A. Grimes “Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes”, Nanotechnology, 17 (2006) 1446. [61] M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, and C. A. Grimes “Applicatiom of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells”, J. Phys. D: Appl. Phys., 39 (2006) 2498. [62] H. Wang, C. T. Yip, K. Y. Cheugn, A. B. Djurisic, and M. H. Xie “Titania nanotube array based photovoltaic cells”, Appl. Phys. Lett., 89 (2006) 23508. [63] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C.A. Grimes “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells”, Nano Lett., 6 (2006) 215. [64] K. Zhu, N. R. Neale, A. Midaner, and A. J. Frank “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays”, Nano Lett., 7 (2007) 69. [65] 鄭柏左,色彩理論與數位影像,新文京開發出版社,1992年。 [66] B. D. Cullity and S. R. Stock, Elrmrnts of X-ray diffraction. Prentice-Hall, New York, (2001). [67] 汪建民,材料分析,中國材料科學學會,1998年。 [68] W.C. Oliver, and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater. Res., 7 (1992) 1564. [69] D. A. Skoog, and J. J. Leary, Principles of instrumental analysi, Fort Worth :Saunders College (1992). [70]蔡毓楨,薛富盛,呂福興,吳宗明,原子力顯微鏡實作訓練教材,五南圖書出版公司,2007年。 [71] S. Hofmann and H. A. Jehn,”Selective oxidation and chemical state of Al and Ti in (Ti,Al)N coating”, Surf. Inter. Anal., 12 (1988) 329-333 [72] I. Bertoti, M. Mohai and J. L.Sullivan, “Surface characterization of Plasma-Nitrided Titanium: An XPS study”, Appl. Surf. Sic., 84 (1995) 357-371 [73] M. Delfion, J. A. Fair, “X-ray photoemission spectra of reactively sputtered TiN”, J. Appl. Phys., 71 (1992) 6079 [74] M. V. Kuznetsov and M. V. Zhuravlec, “Influence of the deposition prameters on the composition, structure and X-ray photoelectron spectroscopy spectra of Ti-N films”, Thin Solid Films, 215 (1992) 1. [75] I. Milosve, H. H. Strehblow, and M. M. Hukovic, “Electrochemical and thermal oxidation of TiN coatings studied by XPS”, Surf. Inter. Anal., 23 (1995) 529. [76] N. C. Saha and H. G. Tompkins, “Titanium Nitride Oxidation chemistry: An X-ray photoelectron spectroscopy study”, J. Appl. Phys., 72 (1992) 3072. [77] C. Ernsberger, J. Nickerson, “Low temperature oxidation behavior of reactively sputtered TiN by X-ray photoelectron spectroscopy and contact resistance measuremements”, J. Vac. Sci. Technol. A, 4 (1986) 2784. [78] P. Prieto and R. E. Kirb’y, “X-ray photoelectron spectroscopy study of the difference between reactively evaporated and direct stutter-deposited TiN films and their oxidation properties”, J. Vac. Sci. Technol. A, 13 (1995) 2819. [79] Y.-K Lee, J-Y Kim, Y.-K Lee, M.-S Lee, D.-K Kim, D.-Y Jin, T.-H Nam, H.-J Ahn and D-K Park, “Surface chemistry of non-stoichiometric TiNx films grown on (100)Si substrate by DC reactive magnetron sputtering”, J. Cryst. Growth., 234 (2002) 498. [80] M. Drygas, C. Czosnek, R. T. Paine,. and J. F. Janik, “Two-Stage Aerosol Synthesis of titanium nitride TiN and titanium oxynitride TiOxNy nanopowders of spherical particle morphology”, Chem. Mater., 18 (2006) 3122. [81] L. D. Arsov, C. Kormann, and W. Plieth, “Electrochemical synthesis and in situ raman spectroscopy of thin films of titanium dioxide”, J. Raman Spectrosc., 22 (1991) 573. [82] C. F. Windisch, J. W. Virden, S. H. Elder, J. Liu, and M. H. Engelhard, “Electrochemisitry of TiN in 6 KOH solution”, J. Electrochem. Soc., 145 ( 1998 ) 1211. [83] A. W. Norman, and F. A. Michael(Eds.), CRC press Inc., Florida, 2000. [84] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin and M. Grätzel, “Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells”, Chem. Commun., (2005) 4351 [85] S. Niyomsoan, W. Grant, D. L. Olson and B. Mishra, “Variation of color in titanium and zirconium nitride decorative thin films”, Thin Solid Films, 415 (2002) 187. [86] I. Barin and G. Platzki, Thermochemical data of pure substances, 3rd ed. Edited Vol.2., VCH, New York, 1995. [87] Y. Makion, M. Nose, T. Tanaka, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, and K. Nogi, “Characterization of Ti(NxOy) cotings produced by the arc ion plating method”, Surf. Coat. Technol., 98 (1998) 934. [88] K. W. Böer., Survey of semiconductor physics,Van Nostrand Reinhold, New York, 1992. [89] J. Pelleg, L. Z. Zevin, S. Lungo and N. Croitoru, “Reactive-sputter-deposited TiN films on glass substrates”, Thin Solid Films, 197 (1991) 117. [90] D. Dobrev, “Ion-beam-induced texture formation in vacuum-condensed thin metal films”, Thin Solid Films, 92 (1982) 41. [91] D. William, and JR. Callister, Materials science and engineering :an introduction, Wiley, New York, (2000).
本研究主要以PVD在鍍著功率200 W、偏壓-50 V,背景壓力5×10-6 torr,工作壓力1×10-3 torr下,控制空氣/氬氣流量比值在(9~12)/100時,製備薄膜之後分別以色度計進行顏色的分析,並針對所鍍著之薄膜的結晶相,以X光繞射儀(XRD)作分析,並以場發射電子顯微鏡(FE-SEM)觀察薄膜的微結構,另以歐傑電子能譜儀(AES)及X光光電子能譜儀(XPS)進行薄膜化學組態分析,此外以四點探針進行薄膜的電阻率分析,及以奈米壓痕儀進行薄膜的硬度分析。結果薄膜為金黃色(L*:76.0~78.2,a*:1.2~2.4,b*:25.9~28.4)岩鹽(rock-salt)型結晶相,微結構為柱狀晶,其電阻率為40~178 μΩ-cm,硬度為20~23 GPa,氧含量為10.2~16.7 at%,與文獻所報導的TiN性質比對後,證實能以空氣成功製備出TiN薄膜;進一步以背景壓力1×10-4 torr,控制空氣/氬氣流量比值在(9~10)/100時,也能成功製備出電阻率為99~107 μΩ-cm、硬度為21~22 GPa之TiN薄膜,根據本研究之設備抽背景真空度5×10-6 torr約需要25~30分鐘,而1×10-4 torr只需要3~4分鐘,兩者的抽氣時間差異極大,因此能省去抽真空的時間,達到環保節能的目的;然而本研究也發現,當鍍著功率升高時,要製備出金黃色TiN所通入的空氣流量比值也必須增加。在空氣中可製備出TiN膜之結果與熱力學之預期在300 K~1273 K於空氣中會形成TiO2結果不符,但能確定鈦在電漿環境下與空氣產生氮化確是動力學控制的結果。
此外本研究改變不同空氣/氬氣流量比值時,薄膜顏色會有銀白色→金黃色→紅銅色→土黃色→酒紅色→紫藍色等變化,此方法能取代過去文獻曾經報導,控制N2/O2之比值來達到色彩多元的目的。另外本研究首次嘗試將TiN應用於染料敏化太陽電池上,實驗過程發現TiN經陽極氧化後,所製備出的奈米多層TiO2,製作成染料敏化太陽能電池後,在持續照光的條件下,電池所量測到的開環電壓(Voc)為0.45 V,短路電流(Jsc)為0.04 mA。因此在綠能概念下本研究的方法所製備之TiN於環保與染料敏化太陽能電池上將更具有優勢。

TiN films have been widely applied in industry. The films are commonly prepared by physical vapor deposition (PVD), during which a high vacuum is required and nitrogen is conventionally used as a reactive gas. The greenhouse effect and the energy issues have received much attension in recent years. This research is to improve the manufacture process of TiN to achieve the goal of saving energy and cost reduction. The object is to replace nitrogen by air in preparing TiN, which has advantages of green process and low manufacturing cost.
The main parameters used in PVD are: direct current power 200 W, and biased voltage -50 V, base pressure 5×10-6 torr, and working pressure 1×10-3 torr. The flow rate ratio of air/Ar(9 ~ 12)/100. The color of the films was analyzed by a colorimeter. Crystal phases were analyzed by X-ray diffraction, micro structures were examined by field-emission scanning electron microscopy, and chemical compositions were determined by Auger electron spectroscopy and X-ray photoelectron spectroscopy. In addition, electrical resistivity was measured by a four-point probe system, and hardness was measured by a nanoindeter. TiN films were golden (L *: 76.0 ~ 78.2, a *: 1.2 ~ 2.4, b *: 25.9 ~ 28.4), and exhibited a rock-salt phase. Columnar structure was present. Electrical resistivity ranged from 40 to 178 μΩ-cm, the hardness was about 20 to 23 GPa, and the oxygen content was 10.2 to 16.7 at%. It is confirmed that the films fulfill the characteristies of TiN. Increasing the base pressure to 1×10-4 and varing the air/Ar ratio (9 ~ 10)/100 could also successfully prepare TiN films with the electrical resistivity of 99~107 μΩ-cm and hardness of 21~22 GPa. It is normally takes 25 to 30 minutes to achieve a base pressure 5×10-6 torr, while it takes only 3 to 4 minutes to reach 1×10-4 torr. Cost would be reduced gretly. However, the flow rate ratio of the air/Ar increased with direct current power. From thermodynamics predictions, TiO2 will be formed in the range of 300 - 1273 K in air. In the research, TiN could be formed in air. The nitridation of Ti in air under plasma environment is kineticsly controlled.
Varying the rate ratio of air and argon caused the color changing from silver color → golden color → coppery color → brown color → wine red color → indigo color. Various colors could be present by controlling the rate of air and argon. Synthesis of nano-multilayer TiO2 films on TiN films by anodic oxidation. Through this method, this TiO2 films can be applied on dye-sensitized solar cells. The open circuit voltage was 0.45 V and the short-circuit current was 0.04 mA under the light. Therefore, anodic oxide of TiN can be used in dye-sensitization solar cells.
其他識別: U0005-0906200611292100
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.