Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorYi-Ching Linen_US
dc.contributor.authorYang, Kai-Meien_US
dc.identifier.citation參考文獻 1. V.R. Sturrup, F.J. Vecchio and H. Caratin, “Pulse Velocity as a Measure of 2. Concrete Compressive Strength”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 201-227 3. T.R. Naik and V.M. Malhotra, “The Ultrasonic Pulse Velocity Method”, Chapter 7 in CRC Handbook on Nondestructive Testing of Concrete, V.M. Malhotra and N.J. carino, Eds., CRC Press, Boca raton, FL,1991, pp.169-188. 4. V.M. Malhotra/Editor et al., “In Situ/Nondestructive Testing of Concrete”, ACI SP-82, 1984 5. Tanigawa, Y., Baba, K., and Mori, H., “Estimation of Concrete Strength by Combined Nondestructive Testing Method”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 57-76. 6. ACI Committee 228 Report, “In-Place Methods to Estimate Concrete Strength,” ACI 228.1R-95, 1995, 41 pages. 7. Bungey, J.H., "Testing of Concrete in Structures," Surrey University Press, Glasgow, 1982, pp. 207 8. Malhotra, V.M., “Testing Hardened Concrete : Nondestructive Methods,” ACI Monograph, No. 9, American Concrete Institute/Iowa State University Press, Detroit, 1976, pp. 204. 9. RILEM Recommendations NDT 1, "Testing of Concrete by the Ultrasonic Pulse Method," Paris, 1972, December. 10. Knab, L.J., Blessing, G.V., and Clifton, J.R. (), "Laboratory Evaluation of Ultrasonics for Crack Detection in Concrete," ACI J., 80, 17, 1983. 11. Mary J. Sansalone and William B. Streett, “Impact-Echo: Nondestructive Evaluation of Concrete and Masonry”, BULLBRIER Press, ITHACA, N.Y., 1997, 339 pages. 12. Chao-Peng Lai, Yiching Lin, and Tsong Yen, “Behavior and Estimation of Ultrasonic Pulse Velocity in Concrete,” The International Conference on Structural Engineering ,Mechanics and Computation, Cape Town South Africa, 2001, pp. 1365-1372. 13. Stephen Pessiki and Matthew R. Johnson, “Nondestructive Evaluation of Early-age Concrete Strength In Plate Structures by the Impact-Echo Method,” ACI Materials Journal, Vol. 93, No.3, 1996, pp.260-271. 14. Galan Andrej, “Estimate of Concrete Strength by Ultrasonic Pulse Velocity and Damping Constant,” ACI Journal, Vol. 64, No. 10, 1967, pp. 678-684. 15. Sandor Popovics, L. Joseph Rose, and John S. Popovics, “The Behavior of Ultrasonic Pulses in Concrete,” Cement and Concrete Reaserch, Vol. 20, No.2, 1990, pp.259-270. 16. Lin, Y.; Changfan, H,; and Hsiao, C., “Estimation of High-Performance Concrete Strength by Pulse Velocity,” Journal of the Chinese Institute of Engineers, Vol. 20, No. 6, 1998, pp. 661-668. 17. 邱欽賢,「水工結構混凝土之抗沖蝕性」,國立中興大學土木工程學系碩士論文,民國91年6月。 18. 劉玉雯,「應用於水工結構表層之高性能混凝土磨損行為」,國立中興大學土木工程學系博士論文,民國95年1月。 19. Charles T. Kennedy, “The Design of Concrete Mixes”, ACI Materials Journal, Vol36, 1940, pp.373-400. 20. Leif Berntsson, Satish Chandra, and Tomas Kutti, “Principles and Factors Influencing High-Strength Concrete Production”, Concrete International, Vol.12, No.12, December 1990, pp.59-62. 21. Brian B. Hope and Paul M. Hewitt, “Progressive Concrete Mix Proportioning”, ACI Materials Journal, Vol82, No.3, May-June 1985, pp.350-356. 22. C.C. Yang and R. Huang, “ A Two-Phase Model for Predicting the Compressive Strength of Concrete”, Cement and Concrete Research, Vol.26, No.10, 1996, pp.1567-1577. 23. 楊仲家,黃然,葉為忠, “以微觀力學探討粗骨材對高性能混凝土之影響”,第三屆結構工程研討會, 1996,pp.1785-1793。 24. H.J. Chan, T.Yen, T.P. Lai and Y.L.Huang, “Determination of dividing strength and its relation to the concrete strength in lightweight aggregate concrete”, Cement and Concrete Composites, Vol.21, No.1, 1999, pp.29-37. 25. Malhotra, V.M., /Editor et al. (1984).“In Situ/Nondestructive Testing of Concrete”, ACI SP-82, 1984. 26. Popovics.S.,”Analysis of Concrete Strength versus water-cement ratio relationshop”ACI Materials Journal,Sep.-Oct.1990,PP.517-529. 27. 林炳炎,「飛灰與飛灰混凝土」,現代營建,民國82年7月 28. Dan E.Branson,”Deformation of Concrete Structure” ,1978 .p.2 29. Meyer Betonstein Zeitung,Vol.29,No.8,1963,PP.391-394 30. ACI committee 234, ‘Guide for the Use of Silica Fume in Concrete (234R),” American Concrete Institute Farmington hill, Mich 。 31. M.D. Cohen、 J Oiek, and W. L. Dolch,「Mechanism of Plastic Shinkage Cracking in Portland Cement and Portland Cement-Silica Fume Paste and Motar」,Cement and Concrete Research,Vol 20,No.1,pp. 103-119.1990. 32. 劉楨業、梁智信等,“混凝土結構物修補技術指引”,財團法人中興工程顧問社,2009。 33. ASTM C 805 (1992), "Standard Test Method for Rebound Number of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02. 34. ASTM C 803 (1992), "Standard Test Method for Penetration Resistance of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02. 35. ASTM C 1150 (1992), "Standard Test Method for the Break-Off Number of Concrete," Annual Book of ASTM Standards, Vol. 04.02. 36. ASTM C 900 (1999), "Standard Test Method for Pullout Strength of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02. 37. BSI, 1992, “Recommendations for the Assessment of Concrete Strength by Near-to-Surface Tests,” BS 1881, Part 207, British Standards Institution. 38. ASTM C 597 (1992), "Standard Test Method for Pulse Velocity Through Concrete," Annual Book of ASTM Standards, Vol. 04.02. 39. Komloš, K., Popovics, S., Nurnbergerova, T., Babal, B. and Popovics, J.S. (1996).〝Ultrasonic Pulse Velocity Test of Concrete Properties as Specified in Various Standards,〞Cement and Concrete Composites Volume: 18, June, 1996, pp. 357-364. 40. ASTM C 1383 (1998). "Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method" Annual Book of ASTM Standards, Vol. 04.02., 1998. 41. ASTM C 1074 (1992), "Standard Practice for Estimating Concrete Strength by the Maturity Method," Annual Book of ASTM Standards, Vol. 04.02. 42. ASTM C 873 (1992), "Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds," Annual Book of ASTM Standards, Vol. 04.02. 43. 黃兆龍,「混凝土性質與行為」,詹氏書局,民國86年月 44. T.R. Naik, “The Ultrasonic Testing of Concrete”, Published by ACI in Experimental Methods in Concrete Structure for Practitioners, G.M. Sabnis and N. Fitzsimons, Eds, October 1979. 45. J.Műller-Rochholz, “Determination of the Elastic Properties of Lightweight Aggregate by Ultrasonic Pulse Velocity”, The International Journal of Lightweight Concrete, Vol.1, No.2, 1979, pp.87-90. 46. R. E. Philleo, “Comparison of Results of Three Methods for Determining Young’s Modulus of Elasticity of Concrete”, Journal of ACI, Vol.51, No.5, January 1955,pp.461-469. 47. Klieger Paul, “Long-Time Study of Cement Performance in Concrete, Chapter 10-Progress Report on Strength and Elastic Properties of Concrete”, Journal of ACI, Vol.54, No.6, December 1957,pp.481-503. 48. W.F. Price and J.P. Hynes, “In-Situ Strength Testing of High Strength Concrete”, Magazine of Concrete Reseach, Vol.48, No.176, Sept. 1996,pp.189-197. 49. Anderson David and K. Seals Roger, “Pulse Velocity as a Predictor of 28- and 90-Day Strength”, ACI Materials Journal, Vol.78, No.2, March-April 1981, pp.116-122. 50. M.F. Kaplan, “Compressive Strength and Ultrasonic Pulse Velocity Relationships for Concrete in Columns”, Journal of ACI, Vol.54, No.8, February 1958,pp.675-688. 51. P. S. Pessiki and N.J. Carino, “Setting Time and Strength of Concrete Using the Impact-Echo Method”, ACI Materials Journal, 1988; Vol.85, No.5, pp.389-399. 52. H. W. Chung and K.S. Law, “Diagnosing in Situ Concrete by Ultrasonic Pulse Technique”, Concrete International, Vol.13, No.10,1983, pp.42-49. 53. F. Sellect Scott, N. Landis Eric, L. Peterson Michael, P. Shah Surendra and D. Achenbach Jan, “Ultrasonic Investigation of Concrete with Distributed Damage”, ACI Materials Journal, Vol.95, No.1, January-February 1998, pp.27-36. 54. Wimal Suaris and Viraj Fernando, “Ultrasonic Pulse Attenuation as a Measure of Damage Growth during Cyclic Loading of Concrete”, ACI Materials Journal, May-June 1987, Vol.84, pp.185-193. 55. T.T. Wu and T. F. Lin, “The Stress Effect on the Ultrasonic Velocity Variation of Concrete under Repeated Loading”, ACI Materials Journal, Vol.95, No.5, September-October 1998, pp.519-524. 56. Sandor Popovics, “A Hypothesis Concrete the Effects of Macro-Porosity on Mechanical Properties of Concrete”, Fracture of Concrete and Rock, SEM-RILEM International Conference, June 1987,Houston Texas, pp.170-174. 57. Andersen Johannes and Nerenst Poul, “ Wave Velocity in Concrete”, Journal of ACI, Vol.48, No.8, April 1952,pp.613-636. 58. R. Jones, “Testing of Concrete by an Ultrasonic Pulse Technique”, RILEM Int. Symp. On Nondestructive Testing of Materials and Structures, Paris. Vol.1, Paper No.A-17, January 1954, pp.137, RILEM Bull. No.19, 2nd part, November 1954. 59. M.F. Kaplan, “Effects of Incomplete Consolidation on Compressive and Flexural Strength, Ultrasonic Pulse Velocity, and Dynamic Modulus of Elasticity of Concrete”, Journal of ACI, Vol.56, No.9, March 1952, pp.853-867. 60. Sandor Popovics, “A Hypothesis Concrete the Effects of Macro-Porosity on Mechanical Properties of Concrete”, Fracture of Concrete and Rock, SEM-RILEM International Conference, June 1987,Houston Texas, pp.170-174. 61. 郭世芳,「探討超音波速度與混凝土抗壓強度之關係與其應用」 ,國立中興大學土木工程學系博士論文,民國96年7月。 62. 林晉章,「爐石混凝土波速與強度成長關係曲線之探討與現地強度評估之應用」國立中興大學土木工程學系碩士論文,民國100年七月。 63. 黃瑋倫,「探討不同齡期飛灰混凝土波速與強度之成長關係曲線」國立中興大學土木工程學系碩士論文,民國101年七月。 64. 詹智捷,「混凝土含水狀態之量測與超音波波速關係之建立」,國立中興大學土木工程學系碩士論文,民國99年七月。 65. 汪信宏,「不同含水狀態對混凝土表面及內部波速量測之影響」國立中興大學土木工程學系碩士論文,民國101年七月。 66. ACI Committee 318 (1983) ‘Commentary on Building Code Requirements for Reinforced Concrete (ACI 318-83),’ American Concrete Institute, Farmington Hills, Mich., 266pp.en_US
dc.description.abstract本研究乃是利用超音波速法與敲擊回音波速法來評估耐磨性混凝土的抗壓強度,主要工作分為實驗室試驗及現地試驗,首先須在實驗室建立: (1)試體導電值與飽和度關係 (2)波速與飽和度之修正係數 (3)波速與強度之關係曲線。而對於超音波波速法,在現地檢測施作上有應用之限制,因此找出敲擊回音波速法與超音波波速法之轉換係數,使實驗室建立的波速-強度關係可應用在現地檢測上。 現場施作方面,選定溢洪道堰面為現場施測對象。 由於本實驗所研究的現地對象,因現場施作情況考量,在斜坡澆置試體時需要較低坍度之混凝土,將原設計強度840 kgf/cm2之混凝土稍作調整,提高了現場混凝土之強度。因此在現場另外灌製一批與現地配比相同之圓柱試體,建立波速-強度之關係曲線並預估現地強度,利用敲擊回音法量測現地混凝土波速,將所測得之敲擊回音波速經飽和度修正及波速轉換係數後,代入波速-強度之關係曲線預估其強度,試驗的結果顯示敲擊回音法適合現地之波速檢測與由敲擊回音波速推求得到之混凝土強度與鑽心試體強度比較結果良好。zh_TW
dc.description.abstractThe objective of the thesis is to investigate the in-place concrete strength by using the impact-echo method and ultrasonic pulse velocity method. The main working tasks include the test at laboratory and the in-place test. The first work is to establish(1) the relationship between conductivity coefficient and the saturation degree of concrete; (2) the relationship between the modification factor of ultrasonic pulse velocity (UPV) and the saturation degree of concrete; and (3) the UPV-strength relationship curve. However, there are some restrictions when ultrasonic pulse velocity method is applied to in-place test. Therefore, the way to make the UPV-strength relationship applicable to in-place test is to finding the conversion factor of the impact-echo method and the UPV method. The field studies were carried out at the construction site of the repaired spillway. To account for the working condition on a steep slope at the construction site, the mixture proportion of concrete was adjusted to fit the need of low-slump concrete. Such adjustment increases the strength of concrete from the original design strength of 840 kgf/cm2 to a higher level. Therefore, additional cylindrical specimens made of concrete used in the spillway were needed to establish the UPV-strength relationship curve to estimate the in-place strength. The impact-echo method was used to measure the in-place P-wave speed of concrete. In consideration of the wave velocity conversion between two different measurement methods, the measured impact-echo velocity through saturation correction was substituted into UPV-strength relationship curve to estimate the concrete strength. Experimental results show that the impact-echo method is cabaple of measuring the P-wave speed and the use of the measured wave speed results in good estimated strength comparing with coring strength.en_US
dc.description.tableofcontents摘要 I ABSTRACT II 目錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 文獻回顧 3 2-1 混凝土之材料組成 3 2-1-1 混凝土特性與組成材料 4 2-1-2 混凝土強度之影響因素 5 2-1-3 耐磨性混凝土之特質 7 2-2 混凝土強度之非破壞檢測技術介紹 11 2-3 混凝土之波傳行為特性 22 2-3-1 波速檢測於混凝土性質之研究 22 2-3-2 影響混凝土波傳速度之主要因素 24 2-4 波速與混凝土強度之關係 27 第三章 試驗儀器、原理與方法 29 3-1 超音波波速之量測 29 3-1-1 試驗原理與方法 29 3-1-2 試驗儀器 31 3-1-3 試驗步驟 31 3-2 敲擊回音法波速之量測 32 3-2-1 P-波波速量測 32 3-2-2 試驗儀器 33 3-2-3 試驗步驟 34 3-3 含水量測定儀 34 3-4 抗壓強度試驗 35 第四章 試驗規劃 37 4-1 混凝土配比 37 4-2 現場澆置試體之實驗規畫與流程 38 4-2-1 圓柱試體試驗 38 4-2-2 方塊試體試驗 39 4-2-3 版試體試驗 39 4-2-4 溢洪道堰面檢測之規劃與施作 40 第五章 試驗結果分析與討論 41 5-1 強度-波速發展與齡期關係 41 5-2 導電值-飽和度關係之建立與討論 42 5-3 強度-波速成長關係曲線之建立及驗證 44 5-3-1 強度-波速成長關係曲線之建立 44 5-3-2 版試體之驗證 44 5-3-3 溢洪道堰面之驗證 48 第六章 結論與建議 51 參考文獻 53zh_TW
dc.titleUse of stress wave method to evaluate the strength of abrasion-resistant concreteen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:土木工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.