Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10150
標題: TiVCr基多元薄膜製備、性質與應用研究
Preparation, Characteristic and Application of TiVCr-based Multi-element Thin Films
作者: 蔡篤承
Tsai, Du-Cheng
關鍵字: High entropy alloy;高熵合金;hard coating;diffusion barrier layer;硬質薄膜;擴散阻障層
出版社: 材料科學與工程學系所
引用: Chapter 1 [1]. W. Grzesik, Advanced Protective Coatings for Manufacturing and Engineering, Cincinnati, p. 40-55 (2003). [2]. U. Helmersson, S. Todorova, S. A. Barnett, J. E. Sundgren, L. C. Markert, J. E. Greene, J. Appl. Phys. 62 (1987) 481-484. [3]. P. B. Mirakami, L. Hultman, S. A. Barnett. Appl. Phys. Lett. 57 (1990) 2654-2656. [4]. M. Shinn, L. Hultman, S. A. Barnett, J. Mater. Res. 7 (1992) 901-911. [5]. X. Chu, M. S. Wong, W. D. Sproul, S. L. Rohde, S. A. Barnett, J. Vac. Sci. Technol. A 10 (1992) 1604-1609. [6]. X. Chu, S. A. Barnett, M. S. Wong, W. D. Sproul, Surf. Coat. Technol. 57 (1993) 13-18. [7]. D. Li, X. W. Lin, S. C. Chen, V. P. Dravid, Y. W. Chung, M. S. Wong, W. D. Sproul. Appl. Phys. Lett. 68 (1996) 1211-1213. [8]. M. L. Wu, W. D. Qian, Y. W. Chung, Y. Y. Wang, M. S. Wong, W. D. Sproul, Thin Solid Films 308-309 (1997) 113-117. [9]. H. Jensen, J. Sobota, G. Sorensen, Surf. Coat. Technol. 94-95 (1997) 174-178. [10]. H. Jensen, J. Sobota, G. Sorensen, J. Vac. Sci. Technol. A 16 (1998) 1180-1884. [11]. K. K. Shih, D. B. Dove, Appl. Phys. Lett. 61 (1992) 654-656. [12]. X. Chu, M. S. Wong, W. D. Sproul, S. A. Barnett, Surf. Coat. Technol. 61 (1993) 251-256. [13]. A. Madan, X. Chu, S. A. Barnett, Appl. Phys. Lett. 68 (1996) 2198-2200. [14]. A. Madan, Y. Y. Wang, S. A. Barnett, C. Engström, H. Ljungcrantz, L. Hultman, M. Grimsditch, J. Appl. Phys. 84 (1998) 776-785. [15]. S. Veprek, S. Mukherjee, P. Karvankova, H. D. Männling, J. L. He, K. Moto, J. Prochazka, A. S. Argon, J. Vac. Sci. Technol. A 21 (2003) 532-544. [16]. J. E. Field, The Properties of Diamond, Academic, London, (1979). [17]. S. M. Gorbatkin, R. L. Rhoades, T. Y. Tsui, W. C. Oliver, Appl. Phys. Lett. 65 (1994) 2672-2674. [18]. W. C. Oliver, G. M. Pharr, J. Mater. Res. 7 (1991) 1564-1583. [19]. A. A. Voevodin, J. S. Zabinski, Diamond Relat. Mater. 7 (1998) 463-467. [20]. T. Y. Tsui, G. M. Pharr, W. C. Oliver, C. S. Bhatia, R. L. White, S. Anders, A. Anders, I. G. Brown, Mater. Res. Soc. Symp. Proc. 383 (1995) 447-452. [21]. S. Vepřek, Thin Solid Films 317 (1998) 449-454. [22]. S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. Jílek, M. Šíma, Surf. Coat. Technol., 108-109 (1998) 138-147. [23]. S. Vepřek, Thin Solid Films 297 (1997) 145-153. [24]. C. Mitterer, P. H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P. N. Gibson, W. Gissler, H. Hrubý, J. Musil, J. Vlček, Surf. Coat. Technol. 120-121 (1999) 405-411. [25]. J. Musil, P. Zeman, H. Hrubý, P. H. Mayrhofer, Surf. Coat. Technol. 120-121 (1999) 179-183. [26]. A. Cavaleiro, B. Trindade, M. T. Vieira, Surf. Coat. Technol. 116-119 (1999) 944-948. [27]. C. Louro, A. Cavaleiro, Surf. Coat. Technol. 116-119 (1999) 74-80. [28]. M. Benda, J. Musil, Vacuum 55 (1999) 171-175. [29]. J. Musil, H. Hrubý, Thin Solid Films 365 (2000) 104-109. [30]. Y. Min, Y. Makino, M. Nose, K. Nogi. Thin Solid Films 339 (1999) 203-208. [31]. J. Musil, H. Poláková, Surf. Coat. Technol. 127 (2000) 99-106. [32]. F. Regent, J. Musil, Surf. Coat. Technol. 142-144 (2001) 146-151. [33]. J. Musil, H. Poláková, V. Cibulka, Czech. J. Phys. 49 (1999) 359-372. [34]. A. A. Voevodin, J. S. Zabinski, J. Mater. Sci. 33 (1998) 319-327. [35]. J. Procházka, P. Karvánková, M. G. J. Vepˇrek-Heijman, S. Vepˇrek, Mater. Sci. Eng. A 384 (2004) 102-116. [36]. G. Long, J. Am. Ceram. Soc. 42 (1959) 53-59. [37]. O. Knotek, T. Leyendecker, F. Jungblut, Thin Solid Films 153 (1987) 83-90. [38]. D. B. Lews, I. Wadsworth, W. D. Münz, R. Kuzel Jr., V. Valvoda, Surf. Coat. Technol., 116-119 (1999) 284-291. [39]. F. Huang, G. Wei, J. A. Barnard, M. L. Weaver, Surf. Coat. Technol. 146-147 (2001) 391-397. [40]. O. Knotek, M. Bo¨hmer, T. Leyendecker, F. Jungblut, Mater. Sci. Eng. A 105-106 (1988) 481-488. [41]. W. D. Münz, Werkstoffe und Korrosion 41 (1990) 753-754. [42]. Y. Makino, Surf. Coat. Technol. 193 (2005) 185-191. [43]. A. Sugiyama, H. Kajioka, Y. Makino, Surf. Coat. Technol. 97 (1997) 590-594. [44]. Y. Makino, K. Nogi, Surf. Coat. Technol. 98 (1998) 1008-1012. [45]. H. Hasegawa, T. Yamamoto, T. Suzuki, K. Yamamoto, Surf. Coat. Technol. 200 (2006) 2864-2869. [46]. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303. [47]. P. K. Huang, J. W. Yeh, T. T. Shun, S. K. Chen, Adv. Eng. Mater. 6 (2004) 74-78. [48]. T. K. Chen, T. T. Shun, J. W. Yeh, M. S. Wong, Surf. Coat. Technol. 188 (2004) 193-200. [49]. T. K. Chen, M. S. Wong, T. T. Shun, J. W. Yeh, Surf. Coat. Technol. 200 (2005) 1361-1365. [50]. C. H. Lai, S. J. Lin, J. W. Yeh, S. Y. Chang, Surf. Coat. Technol. 201 (2006) 3275-3280. [51]. C. H. Lin, J. G. Duh, J. W. Yeh, Surf. Coat. Technol. 201 (2007) 6304-6308. [52]. H. W. Chang, P. K. Huang, A. Davison, J. W. Yeh, C. H. Tsau, C. C. Yang, Thin Solid Films 516 (2008) 6402-6408. [53]. M. H. Tsai, C. H. Lai, J. W. Yeh, J. Y. Gan, J. Phys. D:Appl. Phys. 41 (2008) 235402-1235402-7. [54]. Y. S. Huanga, L. Chenb, H. W. Lui, M. H. Cai, J. W. Yeh, Mater. Sci. Eng. A 457 (2007) 77-83. [55]. P. K. Huang, J. W. Yeh, Surf. Coat. Technol. 203 (2009) 1891-1896. [56]. M. Wittmer, J. Vac. Sci. Technol. A 2 (1984) 273-280. [57]. T. Kouno, H. Niwa, M. Yamada, J. Electrochem. Soc. 145 (1998) 2164-2167. [58]. C. A. Chang, J. Vac. Sci. Technol. A 8 (1990) 3796-3802. [59]. E. Kolawa, J. S. Chen, J .S. Reid, P. J. Pokela, M. A. Nicolet, J. Appl. Phys. 70 (1991) 1369-1373. [60]. K. Holloway, P. M. Fryer, C. Cabral Jr., J. M. E. Harper, P. J. Bailey, K. H. Kelleher, J. Appl. Phys. 71 (1992) 5433-5444. [61]. L. A. Clevenger, N. A. Bojarczuk, K. Holloway, J. M. E. Harper, C. Cabral, Jr., R. G. Schad, F. Cardone, L. Stolt, J. Appl. Phys. 73 (1993) 300-308. [62]. P. Catania, J. P. Doyle, J. J. Cuomo, J. Vac. Sci. Technol. A 10 (1992) 3318-3320. [63]. H. Itow, Y. Nakasaki, G. Minamihaba, K. Suguro, H. Okano, Appl. Phys. Lett. 63 (1993) 934-936. [64]. A. Ohta, A. Noya, M. Takeyama, M. Taguchi, T. Sase, K. Sasaki, Thin Solid Films 278 (1996) 6-11. [65]. T. Oku, E. Kawakami, M. Uekubo, K, Takahiro, S. Yamaguchi, M. Murakami, Appl. Surf. Sci. 99 (1996) 265-272. [66]. K. H. Min, K. C. Chun, K. B. Kim, J. Vac. Sci. Technol. B 14 (1996) 3263-3269. [67]. S. H. Kwon, O. K. Kwon, J. S. Min, S. W. Kang, J. Electrochem. Soc. 153 (2006) G578-G581. [68]. C. W. Chen, J. S. Chen, J. S. Jeng, J. Electrochem. Soc. 155 (2008) H438-H442. [69]. H. Y. Cheng, Y. C. Chen, C. N. Lee, R. J. Chung, T. S. Chin, J. Electrochem. Soc. 153 (2006) G685-G691. [70]. S. Rawal, D. P. Norton, T. J. Anderson, L. M. White, Appl. Phys. A 94 (2009) 691-695. [71]. P. Majumder, C. Takoudis, J. Electrochem. Soc. 155 (2008) H703-H706. [72]. Y. He, J. Y. Feng, J. Cryst. Growth 263 (2004) 203-207. [73]. B. H. Lee, K. Yong, J. Vac. Sci. Technol. B 22 (2004) 2375-2379. [74]. P. Majumder, C. G. Takoudis, Appl. Phys. Lett. 91 (2007) 162108-1-162108-3. [75]. Y. Wang, F. Cao, Y. T. Liu, M. H. Ding, Appl. Phys. Lett. 92 (2008) 032108-032108-3. [76]. X. P. Qu, J. J. Tan, M. Zhou, T. Chen, Q. Xie, G. P. Ru, B. Z. Li, Appl. Phys. Lett. 88 (2006) 151912-1151912-3. [77]. L. C. Leu, D. P. Norton, L. M. White, T. J. Anderson, Appl. Phys. Lett. 92 (2008) 111917-1-111917-3. [78]. M. H. Tsai, J. W. Yeh, J. Y. Gan, Thin Solid Films 516 (2008) 5527-5530. [79]. M. H. Tsai, C. W. Wang, C. H. Lai, J. W. Yeh, J. Y. Gan, Appl. Phys. Lett. 92 (2008) 052109-1-052109-3. [80]. S. Y. Chang, D. S. Chen, Appl. Phys. Lett. 94 (2009) 231909-1231909-3. Chapter 2 [1]. L. E. Toth, Transition Metal Carbides and Nitrides, Academic, New York, (1971). [2]. W. S. Williams, in Progress in Solid State Chemistry, M. Reiss and J. D. Mac Calden, Editors, Pergamon, New York, (1971). [3]. W. Schintlmeister, O. Pacher, K. Pfaffinger, T. Raine, J. Electrochem. Soc. 123 (1976) 924-929. [4]. J. W. Seok, N. M. Jadeed, R. Y. Lin, Surf. Coat. Technol. 138 (2001) 14-22. [5]. Y. Wang, R. Y. Lin, Mater. Sci. Eng. B 112 (2004) 42-49. [6]. R. R. Boyer, Mater. Sci. Eng. A 213 (1996) 103-114. [7]. D. M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in Medicine, Springer, Berlin, (2001). [8]. D. W. Shoesmith, J. J. Noel, D. Hardie, B. M. Ikeda, Corr. Rev. 18 (2000) 331-359. [9]. D. W. Shoesmith, B. M. Ikeda, D. M. LeNeveu, Corrosion (Houston) 53 (1997) 820-829. [10]. D. Sinigaglia, G. Taccani, B. Vicentini, G. Dallaspezia, J. Electrochem. Soc. 125 (1978) 1199-1204. [11]. R. Banerjee, K. Singh, M. K. Totlani, A. K. Suri, J. Vac. Sci. Technol. A 21 (2003) 310-317. [12]. R. Banerjee, R. Chandra, P. Ayyub, Thin Solid Films 405 (2002) 64-72. [13]. Y. Miyamoto, Y. Kubo, N. Ono, M. Hashimoto, T. Takahashi, I. Ito, F. Arezzo, P. Gimondo, Thin Solid Films 270 (1995) 253-259. [14]. T. Gredić, M. Zlatanović, N. Popović, Ž. Bogdanov, Thin Solid Films 228 (1993) 261-266. [15]. A. S. Korhonen, E. H. Sirvio, M.S. Sulonen, Thin Solid Films 107 (1983) 387-394. [16]. R. Grün, Surf. Coat. Technol. 74-75 (1995) 598-603. [17]. C. C. Wang, M. C. Chiu, M. H. Shiao, F. S. Shieu, J. Electrochem. Soc. 151 (2004) F252-F256. [18]. M. H. Shiao, Z .C. Chang, F. S. Shieu, J. Electrochem. Soc. 150 (2003) C320-C324. [19]. L. Berger, J. W. Mrosk, C. Ettl, H. J. Fecht, S. Flege, H. Hahn, U. Wolff, in proceeding of the 25th Industrial Electronics Society, p. 46, IEEE, (1999). [20]. H. Monji, M. Aoki, H. Torii, H. Okinaka, U.S. Pat. 4,629,487 (1986). [21]. Y. Kashiwgi, M. Umetani, H. Kataoka, K. Inoue, S. Nakamura, S. Morimoto, U.S. Pat. 6,009,728 (2000). [22]. K. Hibino, M. Umetani, H. Kataoka, U.S. Pat. 6,119,485 (2000). [23]. J. Dutkiewicz, S. Schlueter, W. Maziarz, J. Metastable Nanocryst. Mater. 20-21 (2004) 127-132. [24]. S. Hyun, O. Kraft, R. P. Vinci, Mat. Res. Soc. Symp. Proc. 673 (2001) 3.2.1-3.2.6. [25]. P. K. Huang, J. W. Yeh, T. T. Shun, S. K. Chen, Adv. Eng. Mater. 4 (2004) 74-78. [26]. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303. [27]. C. P. Lee, Y. Y. Chen, C. Y. Hsu, J. W. Yeh, H. C. Shih, J. Electrochem. Soc. 154 (2007) C424-C430. [28]. B. Chapman, Glow Discharge Processes, Sputtering and Plasma Etching, John Wiley & Sons, New York, (1980). [29]. A. Lousa, E. Martínez, J. Esteve, E. Pascual, Thin Solid Films 355-356 (1999) 210-213. [30]. M. Tan, J. Zhu, A. Liu, Z. Jia, J. Han, Mater. Lett. 61 (2007) 4647-4650. [31]. J. H. Huang, C. Y. Hsu, S. S. Chen, G. P. Yu, Mater. Chem. Phys. 77 (2003) 14-21. [32]. H. C. Yao, M. C. Chiu, W. T. Wu, F. S. Shieu, J. Electrochem. Soc. 153 (2006) F237-F243. [33]. K. J. Martin, A. Madan, D. Hoffman, J. Ji, S. A. Barnett, J. Vac. Sci. Technol. A 23 (2005) 90-98. [34]. D. C. Tsai, F. S. Shieu, S. Y. Chang, H. C. Yao, and M. J. Deng, J. Electrochem. Soc. 157 (2010) K52-K58 [35]. D. C. Tsai, Y. L. Huang, S. R. Lin, S. C. Liang, F. S. Shieu, Appl. Surf. Sci. 257 (2010) 1361-1367. [36]. J. A. Thornton, J. Vac. Sci. Technol. A 4 (1986) 3059-3065. [37]. J. Nazon, J. Sarradin, V. Flaud, J. C. Tedenac, N. Fr´ety, J. Alloys Compd. 464 (2008) 526-531. [38]. G. Dong, M. Zhang, X. Zhao, Y. Li, H. Yan, J. Cryst. Growth 311 (2009) 1256-1259. [39]. A. Javed, J. Sun, Appl. Surf. Sci. 257 (2010) 1211-1215. [40]. R. W. Hoffman, Phys. Thin Films 3 (1966) 211-273. [41]. A. J. Maeland, G. G. Libowitz, J. F. Lynch, J. Less Common Met. 104 (1984) 361-364. [42]. S. W. Cho, C. N. Park, J. H. Yoo, J. Choi, J. S. Park, C. Y. Suh, G. Shim, J. Alloys Compd. 403 (2005) 262-266. [43]. B. J. Lee, C. S. Lee, and J. C. Lee, Acta Mater. 51 (2003) 6233-6240. [44]. D. Shahrjerdi, B. Hekmatshoar, L. Rezaee, S. S. Mohajerzadeh, Thin Solid Films 427 (2003) 330-334. [45]. M. Jin, A. M. Minor, E. A. Stach, J.W. Morris Jr., Acta Mater. 52 (2004) 5381-5387. [46]. K. Zhang, J. R. Weertman1, J. A. Eastman, Appl. Phys. Lett. 85 (2004) 5197-5199. [47]. Z. Shan, E. A. Stach, J. M. K. Wiezorek, J. A. Knapp, D. M. Follstaedt, S. X. Mao, Sci. 305 (2004) 654-657. [48]. M. Jin, A. M. Minor, J. W. Morris Jr., Thin Solid Films 515 (2007) 3202-3207. [49]. M. Tan, J. Zhu, A. Liu, Z. Jia, J. Han, Mater. Lett. 61 (2007) 4647-4650. [50]. H. Poláková, J. Musil, J. Vlcek, J. Allaart, C. Mitterer, Thin Solid Films 444 (2003) 189-198. [51]. V. Chawla, R. Jayaganthan, R. Chandra, J. Mater. Sci. Technol. 26 (2010) 673-678. [52]. S. Khamseh, M. Nose, T. Kawabata, K. Matsuda, S. Ikeno, J. Alloys Compd. 6 (2010) 389-391. [53]. H. Wulff, C. Eggs, J. Vac. Sci. Technol. A 15 (1997) 2938-2944. [54]. H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley&Sons, New York, (1974). [55]. T. Tsai, S. A. Barnett, J. Electrochem. Soc. 142 (1995) 3084-3087. [56]. S. H. Kim, Y. L. Choi, Y. S. Song, D. Y. Lee, S. J. Lee, Mater. Lett. 57 (2002) 343-348. [57]. J. D. Plummer, M. D. Deal, P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, Prentice-Hall, Englewood Cliffs, NJ, (2000). [58]. J. E. Sundgren, B. O. Johansson, A. Rockett, S. A. Barnett, J. E. Greene, in Physics and Chemistry of Protective Coatings, J. E. Greene, W. D. Sproul, J. A. Thornton, Editor, p. 95, American Institute of Physics, New York, (1986). [59]. Y. H. Kim, J. K. Park, D. K. Lim, H. B. Kang, U.S. Pat. 5,376,606 (1994). [60]. A. J. Maeland, G. G. Libowitz, J. F. Lynch, J. Less Common Met. 104 (1984) 361-364. [61]. S. W. Cho, C. N. Park, J. H. Yoo, J. Choi, J. S. Park, C. Y. Suh, G. Shim, J. Alloys Compd. 403 (2005) 262-266. [62]. W. K. Shen, A. Das, M. Racine, R. Cheng, J. Judy, J. P. Wang, IEEE Trans. Magn. 42 (2006) 2381-2383. [63]. B. W. Dodson, Mater. Res. Soc. Symp. Proc. 128 (1989) 137. [64]. M. Lu, J. H. Judy, J. M. Sivertsen, IEEE Trans. Magn. 26 (1990) 1581-1583. [65]. J. A. Thornton, J. Vac. Sci. Technol. A 4 (1986) 3059-3065. [66]. J. K. Park, W. S. Lee, Y. J. Baik, Surf. Coat. Technol. 171 (2002) 1-5. [67]. N. Jiang, K. Sugimoto, K. Eguchi, T. Inaoka, Y. Shintani, H. Makita, A. Hattab, A. Hiraki, J. Cryst. Growth 222 (2001) 591-594. Chapter 3 [1]. L. E. Toth, Transition Metal Carbides and Nitrides, Academic, New York, (1971). [2]. M. Popović, M. Stojanović, D. Peruško, M. Novaković, I. Radović, V. Milinović, B. Timotijević, M. Mitrić, M. Milosavljević, Nucl. Instrum. Methods Phys. Res. Sect. B 266 (2008) 2507-2510. [3]. M. Novaković, M. Popović, N. Bibić, Methods Phys. Res. Sect. B 268 (2010) 2883-2887. [4]. U. Helmersson, S. Todorova, S. A. Barnett, J. E. Sundgren, L. C. Markert, J. E. Greene, J. Appl. Phys. 62 (1987) 481-484. [5]. M. Shinn, L. Hultman, S. A. Barnett, J. Mater. Res. 7 (1992) 901-911. [6]. S. Vepřek, Thin Solid Films 317 (1998) 449-454. [7]. S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. Jílek, M. Šíma, Surf. Coat. Technol. 108-109 (1998) 138-147. [8]. T. Zhou, P. Nie, X. Cai, P.K. Chu, Vacuum 83 (2009) 1057-1059. [9]. M. Uchida, N. Nihira, A. Mitsuob, K. Toyoda, K. Kubota, T. Aizawa, Surf. Coat. Technol. 177-178 (2004) 627-630. [10]. O. Knotek, T. Leyendecker, F. Jungblut, Thin Solid Films 153 (1987) 83-90. [11]. A. Alberdi, M. Marı´n, B. Dı´az, O. Sa´ nchez, R. E. Galindo, Vacuum 81 (2007) 1453-1456. [12]. Z. C. Chang, S. C. Liang, S. Han, Y. K. Chen, F. S. Shieu, Nucl. Instrum. Methods Phys. Res. Sect. B 268 (2010) 2504-2509. [13]. D. C. Tsai, Y. L. Huang, S. R. Lin, S. C. Liang, F. S. Shieu, Appl. Surf. Sci. 257 (2010) 1361-1367. [14]. M. H. Tsai, C. H. Lai, J. W. Yeh, J. Y. Gan, J. Phys. D: Appl. Phys. 41 (2008) 235402-1-235402-7. [15]. H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley&Sons, New York, (1974). [16]. N. Laegreid, G.K. Wehner, J. Appl. phys. 32 (1961) 365-369. [17]. R. M. Mason, M. Pichiling, J. Phys. D: Appl. Phys. 27 (1994) 2363-2371. [18]. A. J. Maeland, G. G. Libowitz, J. F. Lynch, J. Less Common Met. 104 (1984) 361-364. [19]. S. W. Cho, C. N. Park, J. H. Yoo, J. Choi, J. S. Park, C. Y. Suh, G. Shim, J. Alloys Compd. 403 (2005) 262-266. [20]. D. C. Tsai, F. S. Shieu, S. Y. Chang, H. C. Tao, M. J. Deng, J. Electrochem. Soc. 157 (2010) K52-K58. [21]. D. C. Tsai, Y. L. Huang, S. R. Lin, D. R. Jung, F. S. Shieu, Appl. Surf. Sci. 257 (2011) 3969-3973. [22]. D. C. Tsai, Y. L. Huang, S. R. Lin, D. R. Jung, S. Y. Chang, F. S. Shieu, J. Alloys Compd. 509 (2011) 3141-3147. [23]. K. Yamamoto, T. Sato, K. Takahara, K. Hanaguri, Surf. Coat. Technol. 174 (2003) 620. [24]. P. Hones, R. Sanjine, F. LeAvy, Thin Solid Films 332 (1998) 240-246. [25]. W. K. Shen, A. Das, M. Racine, R. Cheng, J. Judy, and J. P. Wang, IEEE Trans. Magn., 42 (2006) 2381-2383. [26]. L. Hultman, J.-E. Sundgren, J. E. Greene, D. B. Bergstrom, I. Petrov, J. Appl. Phys. 78 (1995) 5395-5403. [27]. J. E. Greene, J.-E. Sundgren, L. Hultman,I. Petrov, D. B. Bergstrom, Appl. Phys. Lett. 67 (1995) 2928-2930. [28]. S. Mahieu, P. Ghekiere, G. De Winter, R. De Gryse, D. Depla, G. Van Tendeloo, O. I. Lebedev, Surf. Coat. Technol. 200 (2006) 2764-2768. [29]. H. Q. Lou, N. Axén, R. E. Somekh, I. M. Hutchings, Surf. Coat. Technol. 203 (1997) 123-127. [30]. L. J. Meng, M. P. dos Santos, Surf. Coat. Technol. 90 (1997) 64-70. [31]. C. H. Lai, S. J. Lin, J. W. Yeh, S. Y. Chang, Surf. Coat. Technol. 201 (2006) 3275-3280. [32]. P. K. Huang, J. W. Yeh, Surf. Coat. Technol. 203 (2009) 1891-1896. [33]. J. Pelleg, L. Z. Zevin, S. Lungo, N. Croitoru, Thin Solid Films 197 (1991) 117-128. [34]. C. C. Lee, J. M. Wu, Appl. Surf. Sci. 253 (2007) 7069-7073. [35]. J. A. Thornton, J. Vac. Sci. Technol. A. 4 (1986) 3059-3065. [36]. J. H. Song, S. C. Wang, J. C. Sung, J. L. Huang, D. F. Lii, Thin Solid Films 517 (2009) 4753-4757. [37]. L. Xu, X. Li, Y. Chen, F. Xu, Appl. Surf. Sci. 257 (2011) 4031-4037. [38]. H. L. Wang, C. H. Lin, M. H. Hon, Thin Solid Films 310 (1997) 260-264. [39]. C. K. Chung, T. S. Chen, J. Electrochem. Soc. 156 (2009) H119-H122. [40]. J. D. Plummer, M. D. Deal, P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, Prentice-Hall, Englewood Cliffs, NJ, (2000). [41]. W. D. Sproul, J. E. Greene, J. A. Thornton, Physics and Chemistry of Protective Coatings, American Institute of Physics, New York, (1986). [42]. Y. H. Kim, J. K. Park, D. K. Lim, H. B. Kang, U.S. Pat. 5,376,606 (1994). Chapter 4 [1]. Y. Xi, H. Fan, W. Liu, J. Alloy Compd. 496 (2010) 695-698. [2]. K. W. Weng, Y. C. Chen, S. Han, C. S. Hsu, Y. L. Chen, D. Y. Wang, Thin Solid Films 516 (2008) 5330-5333. [3]. Z. Y. Chen, Z. Q. Li, X. H. Meng, Appl. Surf. Sci. 255 (2009) 7408-7413. [4]. J. T. Chen, J. Wang, F. Zhang, G. A. Zhang, X. Y. Fan, Z. G. Wu, P. X. Yan, J. Alloy Compd. 472 (2009) 91-96. [5]. X. Z. Ding, X. T. Zeng, Y. C. Liu, F. Z. Fang, G. C. Lim, Thin Solid Films 516 (2008) 1710-1715. [6]. V. M. Vishnyakov, V. I. Bachurin, K. F. Minnebaev, R. Valizadeh, D. G. Teer, J. S. Colligon, V. V. Vishnyakov, V. E. Yurasova, Thin Solid Films 497 (2006) 189-195. [7]. S. M. Aouadi, K. C. Wong, K. A. R. Mitchell, F. Namavar, E. Tobin, D.M. Mihut, S.L. Rohde, Appl. Surf. Sci. 229 (2004) 387-394. [8]. M. Uchida, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota, T. Aizawa, Surf. Coat. Technol. 177-178 (2004) 627-630. [9]. H. Hasegawa, A. Kimura, T. Suzuki, J. Vac. Sci. Technol. A 18 (2000) 1038-1040. [10]. J. Musil, H. Polakova, Surf. Coat. Technol. 127 (2000) 99-106. [11]. C. K. Chung, T. S. Chen, J. Electrochem. Soc. 156 (2009) H119-H122. [12]. R. M. Mason, M. Pichiling, J. Phys. D: Appl. Phys. 27 (1994) 2363-2371. [13]. D. C. Tsai, F. S. Shieu, S. Y. Chang, H. C. Yao, M. J. Deng, J. Electrochem. Soc. 157 (2010) K52-K58. [14]. M. Y. Liao, Y. Gotoh, H. Tsuji, J. Ishikawa, J. Vac. Sci. Technol.A22 (2004) 146-150. [15]. M. M. Larijani, N. Tabrizi, Sh. Norouzian, A. Jafari, S. Lahouti, H. Haj Hosseini, N. Afshari, Vacuum 81 (2006) 550-555. [16]. J. S. Jeng, J.S. Chen, Appl. Surf. Sci. 255 (2009) 8263-8269. [17]. J. Pelleg, L. Z. Zevin, S. Lungo, N. Croitoru, Thin Solid Films 197 (1991) 117-128. [18]. T. Q. Li, S. Noda, H. Komiyama, T. Yamamoto, Y. Ikuhara, J. Vac. Sci. Technol. A 21 (2003) 1717-1723. [19]. J. H. Je, D. Y. Noh, H. K. Kim, K. S. Liang, J. Appl. Phys. 81 (1997) 6126-6133. [20]. J. E. Greene, J.-E. Sundgren, L. Hultman, I. Petrov, D. B. Bergstrom, Appl. Phys. Lett. 67 (1995) 2928-2930. [21]. L. Hultman, J.-E. Sundgren, J.E. Greene, D. B. Bergstrom, I. Petrov, J. Appl. Phys. 78 (1995) 5395-5403. [22]. P. K. Huang, J. W. Yeh, Surf. Coat. Technol. 203 (2009) 1891-1896. [23]. F. Shinoki, A. Itoh, J. Appl. Phys. 46 (1975) 3381-3384. [24]. P. K. Huang, J. W. Yeh, T. T. Shun, S. K. Chen, Adv. Eng. Mater. 6 (2004) 74-78. [25]. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T .T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303. [26]. H. L. Wang, C. H. Lin, M. H. Hon, Thin Solid Films 310 (1997) 260-264. Chapter 5 [1]. H. O. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes, New Jersey, (1996). [2]. Y. Xi, H. Fan, W. Liu, J. Alloys Compd. 496 (2010) 695-698. [3]. A. Kumar, D. Singh, R. Kumar, D. Kaur, J. Alloys Compd. 479 (2009) 166-172. [4]. J. L. Ruan, D. F. Lii, H. H. Lu, J. S. Chen, J. L. Huang, J. Alloys Compd. 478 (2009) 671-675. [5]. L. Chen, Y. Du, S. Q. Wang, A. J. Wang, H. H. Xu, Mater. Sci. Eng. A 502 (2009) 139-143. [6]. Y.C. Chim, X.Z. Ding, X.T. Zeng, S. Zhang, Thin Solid Films 517 (2009) 4845-4849. [7]. M. Keunecke, C. Stein, K. Bewilogua, W. Koelker, D. Kassel, H. van den Berg, Surf. Coat. Technol. 205 (2010) 1273-1278 [8]. X. Z. Ding, X. T. Zeng, Y. C. Liu, F. Z. Fang, G. C. Lim, Thin Solid Films 516 (2008) 1710-1715. [9]. J. T. Chen, J. Wang, F. Zhang, G. A. Zhang, X. Y. Fan, Z. G. Wu, P. X. Yan, J. Alloys Compd. 472 (2009) 91-96. [10]. Y. Chunyan, T. Linhai, W. Yinghui, W. Shebin, L. Tianbao, X. Bingshe, Appl. Surf. Sci. 255 (2009) 4033-4038. [11]. X. Wang, L. S. Wang, Z. B. Qi, G. H. Yue, Y. Z. Chen, Z. C. Wang, D. L. Peng, J. Alloys Compd. 502 (2010) 243-249. [12]. P. Budzynski, J. Sielanko, Z. Surowiec, P. Tarkowski, Vacuum 83 (2009) S186-S189. [13]. D. B. Lee, M. H. Kim, Y. C. Lee, S. C. Kwon, Surf. Coat. Technol. 141 (2001) 232-239 [14]. V. M. Vishnyakov, V. I. Bachurin, K. F. Minnebaev, R. Valizadeh, D. G. Teer, J. S. Colligon, V. V. Vishnyakov, V. E. Yurasova, Thin Solid Films 497 (2006) 189-195. [15]. Y. W. Lin, J. H. Huang, G. P. Yu, Thin Solid Films 518 (2010) 7308-7311. [16]. K. P. Purushotham, L. P. Ward, N. Brack, P. J. Pigram, P. Evans, H. Noorman, R. R. Manory, Wear 254 (2003) 589-596. [17]. G. Abadias, L. E. Koutsokeras, S. N. Dub, G. N. Tolmachova, A. Debelle, T. Sauvage, J. Vac. Sci. Technol. A 28 (2010) 541-551. [18]. S. M. Kim, B. S. Kim, G. S. Kim, S. Y. Lee, B. Y. Lee, Surf. Coat. Technol. 202 (2008) 5521-5525. [19]. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303. [20]. P. K. Huang, J. W. Yeh, T. T. Shun, S. K. Chen, Adv. Eng. Mater. 6 (2004) 74-78. [21]. C. J. Tong, M. R. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, S. J. Lin, S. Y. Chang, Metall. Mater. Trans. A 36A (2005) 1263-1271. [22]. C. J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, S. Y. Chang, Metall. Mater. Trans. A 36A (2005) 881-893. [23]. C. Li, J. C. Li, M. Zhao, Q. Jiang, J. Alloys Compd. 504S (2010) S515-S518 [24]. B. S. Li, Y. P. Wang, M. X. Ren, C. Yang, H. Z. Fu, Mater. Sci. Eng. A 498 (2008) 482-486. [25]. F. J. Wang, Y. Zhang, G. L. Chen, J. Alloys Compd. 478 (2009) 321-324. [26]. T. T. Shun, C. H. Hung, C. F. Lee, J. Alloys Compd. 493 (2010) 105-109. [27]. D. C. Tsai, Y. L. Huang, S. R. Lin, S. C. Liang, F. S. Shieu, Appl. Surf. Sci. 257 (2010) 1361-1367. [28]. S. Y. Chang, S. Y. Lin, Y. C. Huang, C. L. Wu, Surf. Coat. Technol. 204 (2010) 3307-3314. [29]. P. K. Huang, J. W. Yeh, Surf. Coat. Technol. 203 (2009) 1891-1896. [30]. M. Braic, V. Braic, M. Balaceanu, C. N. Zoita, A. Vladescu, E. Grigore, Surf. Coat. Technol. 204 (2010) 2010-2014. [31]. D. C. Tsai, F. S. Shieu, S. Y. Chang, H. C. Yao, M. J. Deng, J. Electrochem. Soc. 157 (2010) K52-K58. [32]. H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley&Sons, New York, (1974). [33]. N. Laegreid, G. K. Wehner, J. Appl. Phys. 32 (1961) 365-369. [34]. K. N. Melton, Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London, (1990). [35]. L. F. Donaghey, L. G. Geraghty, Thin Solid Films 38 (1976) 271-280. [36]. M. Yoshitake, K. Takiguchi, Y. Suzuki, S. Ogawa, J. Vac. Sci. Technol. A 6 (1988) 2326-2332. [37]. R. M. Mason, M. Pichiling, J. Phys. D: Appl. Phys. 27 (1994) 2363-2371. [38]. A. J. Maeland, G .G. Libowitz, J. F. Lynch, J. Less Common Met. 104 (1984) 361-364. [39]. S. W. Cho, C. N. Park, J. H. Yoo, J. Choi, J. S. Park, C. Y. Suh, G. Shim, J. Alloys Compd. 403 (2005) 262-266. [40]. M. Uchida, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota, T. Aizawa, Surf. Coat. Technol. 177-178 (2004) 627-630. [41]. H. Hasegawa, A. Kimura, T. Suzuki, J. Vac. Sci. Technol. A 18 (2000) 1038-1040. [42]. J. Musil, H. Polàkovà, Surf. Coat. Technol. 127 (2000) 99-106. [43]. M. Lu, J. H. Judy, J. M. Sivertsen, IEEE Trans. Magn. 26 (1990) 1581-1583. [44]. J. E. Greene, J.-E. Sundgren, L. Hultman, I. Petrov, D. B. Bergstrom, Appl. Phys. Lett. 67 (1995) 2928-2930. [45]. L. Hultman, J.-E. Sundgren, J. E. Greene, D. B. Bergstrom, I. Petrov, J. Appl. Phys. 78 (1995) 5395-5403. [46]. D. Gall, S. Kodambaka, M. A. Wall, I. Petrov, J. E. Greene, J. Appl. Phys. 93 (2003) 9086-9094. [47]. J. Pelleg, L. Z. Zevin, S. Lungo, N. Croitoru, Thin Solid Films 197 (1991) 117-128. [48]. S. Mahieu, P. Ghekiere, G. D. Winter, R. D. Gryse, D. Depla, G. V. Tendeloo, O. I. Lebedev, Surf. Coat. Technol. 200 (2006) 2764-2768. [49]. H. C. Yao, M. C. Chiu, W. T. Wu, F. S. Shieu, J. Electrochem. Soc. 153 (2006) F237-F243. [50]. K. J. Martin, A. Madan, D. Hoffman, J. Ji, S. A. Barnett, J. Vac. Sci. Technol. A 23 (2005) 90-98. [51]. J. C. Lin, G. Chen, C. Lee, J. Electrochem. Soc. 146 (1999) 1835-1839. [52]. S. H. Kim, Y. L. Choi, Y. S. Song, D. Y. Lee, S. J. Lee, Mater. Lett. 57 (2002) 343-348. [53]. A. van der Drift, Philips Res. Rep. 22 (1967) 267-288. [54]. E. Blando, R. Hubler, Surf. Coat. Technol. 158-159 (2002) 685-689. [55]. H. S. Chou, J. C. Huang, L. W. Chang, T. G. Nieh, Appl. Phys. Lett. 93 (2008) 191901-1-191901-3. [56]. J. Hampshire, P. J. Kelly, D. G. Teer, Thin Solid Films 447-448 (2004) 392-398. [57]. C. K. Chung, T. S. Chen, J. Mater. Res. 23 (2008) 494-499. Chapter 6 [1]. S. P. Maraka, R. J. Gutmann, A .E. Kaloyeros, W. A. Lanford, Thin Solid Films 236 (1993) 257-266. [2]. D. Gupta, Mater. Chem. Phys. 41 (1995) 199-205. [3]. C. S. Liu, L. J. Chen, J. Appl. Phys. 74 (1993) 5501-5506. [4]. J. C. Chuang, M. C. Chen, Thin Solid Films 335 (1998) 146-152. [5]. D. H. Kim, S. L. Cho, K. B. Kim, J. J. Kim, J. W. Park, J. J. Kim, Appl. Phys. Lett. 69 (1996) 4182-4184. [6]. J. C. Chuang, M. C. Chen, J. Electrochem. Soc. 145 (1998) 4029-4035. [7]. T. Kouno, H. Niwa, M. Yamada, J. Electrochem. Soc. 145 (1998) 2164-2167. [8]. K. H. Min, K. C. Chun, K. B. Kim, J. Vac. Sci. Technol. B 14 (1996) 3263-3269. [9]. T. Oku, E. Kawakami, M. Uecubo, K. Takahiro, S. Yamaguchi, M. Murakami, Appl. Surf. Sci. 99 (1996) 265-272. [10]. S. H. Kwon, O. K. Kwon, J. S. Min, S. W. Kang, J. Electrochem. Soc. 153 (2006) G578-G581. [11]. C. W. Chen, J. S. Chen, J. S. Jeng, J. Electrochem. Soc. 155 (2008) H438-H442. [12]. H. Y. Cheng, Y. C. Chen, C. M. Lee, R. J. Chung, T. S. Chin, J. Electrochem. Soc. 153 (2006) G685-G691. [13]. L. C. Leu, D. P. Norton, L. M. White, T. J. Anderson, Appl. Phys. A 94 (2009) 691-695. [14]. P. Majumder, C. Takoudis, J. Electrochem. Soc. 155 (2008) H703-H706. [15]. S. Y. Chang, D. S. Chen, Appl. Phys. Lett. 94 (2009) 231909-1-231909-3. [16]. M. H. Tsai, C. W. Wang, C. H. Lai, J. W. Yeh, J. Y. Gan, Appl. Phys. Lett. 92 (2008) 052109-1-052109-3. [17]. A. J. Maeland, G. G. Libowitz, J. F. Lynch, J. Less Common Met. 104 (1984) 361-364. [18]. D. C. Tsai, F. S. Shieu, S. Y. Chang, H. C. Yao, M. J. Deng, J. Electrochem. Soc. 157 (2010) K52-K58. [19]. D. C. Tsai, Y. L. Huang, S. R. Lin, D. R. Jung, F. S. Shieu, Appl. Surf. Sci. 257 (2011) 3969-3973. [20]. D. C. Tsai, Y. L. Huang, S. R. Lin, D. R. Jung, S. Y. Chang, F. S. Shieu, J. Alloy Compd. 509 (2011) 3141-3147. [21]. H. P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York, (1974). [22]. B. Zhao, K. Sun, Z. Song, J. Yang, Appl. Surf. Sci. 256 (2010) 6003-6006. [23]. Y. Wang, F. Cao, M. H. Ding, L. Shao, Appl. Surf. Sci. 255 (2009) 4738-4741. [24]. Y. Wang, F. Cao, L. Shao, M. H. Ding, Thin Solid Films 517 (2009) 5593-5596. [25]. Y. Wang, F. Cao, X. D. Yang, M. H. Ding, Mater. Chem. Phys. 117 (2009) 425-429. [26]. M. H. Tsai, J. W. Yeh, J. Y. Gan, Thin Solid Films 516 (2008) 5527-5530. [27]. L. C. Leu, D. P. Norton, L. M. White, T. J. Anderson, Appl. Phys. Lett. 92 (2008) 111917-111917-3. [28]. International Technology Roadmap for Semiconductors (Itrs), Updates, Semiconductor Industry Association International, San Jose, CA, (2006).
摘要: 
本論文主要利用射頻磁控濺鍍法以單一等莫耳多元合金靶材在Ar或/與N2之氣氛下製備TiVCr和TiVCrZrY多元合金或氮化物薄膜於Si晶片上。藉由改變鍍膜參數來研究此薄膜的微結構與性質。研究結果與討論主要分為下列幾個部分。第一部分探討濺鍍壓力(0.33–1 Pa)對於TiVCr薄膜結構與性質之影響。在這個研究發現,TiVCr薄膜具有非晶與BCC結晶的複合相。其中非晶相為一較鬆散的纖維結構;而BCC結晶相則為較緻密的柱狀晶結構。隨著濺鍍壓力增加,結構也變得越來越鬆散,薄膜硬度也從11.6 GPa降低至4.5 GPa。第二部分探討基板偏壓(0-15 W)對於TiVCr和TiVCrZrY多元合金薄膜的結構與性質影響。在這個研究,TiVCr和TiVCrZrY多元合金薄膜分別呈現BCC與HCP結構;偏壓上升會造成薄膜變成很緻密,薄膜性質也隨著基板偏壓上升而獲得改善。TiVCr和TiVCrZrY多元合金薄膜因此硬度分別增加至11和14 GPa,而電阻率則分別下降至80和100 μΩ-cm。第三部分主要在不外加基板偏壓與溫度的條件下,製備(TiVCr)N薄膜,探討N2流量比例(0-100%)的變化對於薄膜結構與性質的影響。隨N2流量增加,微結構從多孔轉變成較緻密的柱狀晶結構,因此其硬度被增強至15 GPa;電阻率降低至10,000μΩ-cm。第四部分則報導在不外加基板偏壓與溫度的條件下,製備(TiVCrZrY)N薄膜,討N2流量比例(0-100%)的變化對於薄膜結構與性質的影響。相似於(TiVCr)N薄膜,結構隨著N2流量比例增加越來越緻密,從原先多孔的柱狀晶結構轉變成極為緻密的等軸晶結構,也因此薄膜硬度增強至17.5 GPa。第五部分探討在外加偏壓下,N2流量比例(0-50%)對(TiVCr)N薄膜的結構與性質影響。隨N2流量比例增加,薄膜結構從具有(1 1 1)優選取向、具有錐形表面和空缺晶界的柱狀晶結構轉變為幾乎(2 0 0)優選取向、具有圓頂表面且極為緻密的柱狀晶結構。薄膜硬度也因此提升至18.74 GPa. 第六部分則將第五部分製備之TiVCr薄膜應用至擴散阻障之研究;所製備之擴散阻障層厚度為15 nm。經擴散阻障性質分析發現,TiVCr薄膜在700 oC退火候仍能有效阻障銅矽之交互擴散;結合其較低電阻率及奈米晶結構的特性,在IC元件製程持續微縮的情況下,具有極佳的發展潛力。

The aim of this study is to prepare the TiVCr and TiVCrZrY multi-element coatings onto Si substrates in Ar and/or N2 atmosphere by magnetron sputtering using a single equimolar TiVCr and TiVCrZrY alloy target, respectively. The deposition parameters were varied to investigate the change of structural and properties of these coatings. The research is mainly divided into six sections. In the first section, the TiVCr coatings were deposited onto Si substrates to see the influence of working pressure (0.33-1 Pa) on structure and properties of these coatings. In this study, the TiVCr coatings have a composite structure with amorphous and body-centered cubic (bcc) crystal phases comprised of bundles of fine fibrous structures and V- shaped columnar structures, respectively. Compared with the amorphous zone, the crystalline zone has a denser and more compact structure. The coating microstructure became more porous as working pressure increased. Consequently, the crystal zones of the deposited coatings at 0.33 Pa obtained higher hardness (11.6 GPa) while the deposited coatings at 1 Pa achieved lower hardness (4.5 GPa). In the second section, influence of the substrate bias (0-15 W) on the structure and properties of these coatings were investigated. The deposited TiVCr and TiVCrZrY alloy films possessed a bcc and an hcp solid-solution structure, respectively. As the bias power increased, the microstructure of the films obviously changed from a porous to a dense columnar feature, and the density of the voids existing between the columns decreased. Accordingly, the physical properties of the films were improved. The hardness of the TiVCr and TiVCrZrY films was enhanced to about 11 and 14 GPa, and the electrical resistivity was lowered to 80 and 100 μΩ-cm, respectively. In the third section, (TiVCr)N coatings were deposited under various N2-to-total (N2 + Ar) flow ratio, RN, at room temperature without applying substrate bias. As the RN increases, the microstructure of the coatings obviously changed from a porous to a compact and dense columnar structure. Therefore, the hardness of the (TiVCr)N was enhanced to about 15 GPa, and the electrical resistivity was lowered to 10,000 μΩ-cm. In the fourth section, we reports the influence of growth conditions on the characteristics of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering at various RN. The voids in the coatings are eliminated and the growth of the columnar crystal structures is inhibited along with an increasing RN. As a consequence, highly packed equiaxed amorphous structures with smooth surfaces are formed. The coatings accordingly achieved a pronounce hardness of 17.5 GPa when RN = 100%. In the fifth section, the (TiVCr)N coatings were deposited on Si substrate via rf magnetron sputtering of a TiVCr alloy target under dc bias in a N2/Ar atmosphere. The preferred orientation of the (TiVCr)N coatings changed from (1 1 1) to (2 0 0) with increasing RN. In addition, the microstructure of the nitride coatings was also converted from a columnar structure with void boundaries and rough-faceted surface to a very dense structure with a smooth-domed surface. The grain size of the (TiVCr)N coatings decreased as the RN was increased. Accordingly, the hardness of the (TiVCr)N coatings was enhanced from 4.06 to18.74 GPa as the RN was increased. In the final section, 15 nm-thick sputter-deposited TiVCr alloy thin films were developed as diffusion barrier layers for Cu interconnects. In conjunction with X-ray diffraction, transmission electron microscopy, and energy-dispersive spectroscopy analyses, the Si/TiVCr/Cu film stack remained stable at a high temperature of 700 °C for 30 min. The mixed TiVCr refractory elements alloy barrier layer has the high potential for the future IC development because of its lower resistivity (117μΩ-cm) and nanocrystalline structure.
URI: http://hdl.handle.net/11455/10150
其他識別: U0005-1204201119221800
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.