Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10155
標題: Growth mechanism and gas sensing properties of tellurium nanotubes grown by vapor transport process
以氣相傳輸法合成碲奈米管狀結構及其成長機制與氣體感測之探討
作者: 黃星霖
Huang, Sing-Lin
關鍵字: Tellurium;碲;gas sensor;氣體感測器
出版社: 材料科學與工程學系所
引用: 參考文獻 [1]P. Mohanty, T. Kang, B. Kim, “Synthesis of Single Crystalline Tellurium Nanotubes with Triangular and Hexagonal Cross Sections” J. Phys. Chem. B, 110 (2006) 791. [2]S. Sen, U. M. Bhatta, V. Kumar, K. P. Muthe, S. Bhattacharya, S. K. Gupta, J. V. Yakhmi, “Synthesis of Tellurium Nanostructures by Physical Vapor Deposition and Their Growth Mechanism” Cryst. Growth Des., 8 (2008) 238. [3]T. Siciliano, E. Filippo, A. Genga, G. Micocci, “Single-crystalline Te microtube: Synthesis and NO2 gas sensor application” Sens. Actuators, B 142 (2009) 185. [4]W. Xu, J. Song, L. Sun, J. Yang, W. Hu, Z. Ji, S. H. Yu, “Structural, Electrical, and Photoconductive Properties of Individual Single-Crystalline Tellurium Nanotubes Synthesized by a Chemical Route: Doping Effects on Electrical Structure” Small, 4 (2008) 888. [5]A. M. Phahle, “Electrical properties of thermally evaporated tellurium films” Thin Solid Films, 41 (1977) 235. [6]P. G. Chavan, S. S. Patil, M. A. More, “Field emission studies of Te nanorods grown on Si (111) substrate” Vacuum, 83 (2009) 1307. [7]S. H. Lee, D. K. Ko, Y. Jung, R. Agarwal, “Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires” Appl. Phys. Lett., 89 (2006) 223116. [8]X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu, X. B. Zhang, “Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites” Appl. Phys. Lett., 86 (2005) 062111. [9]T. L. Chu, S. Chu, J. Britt, C. Ferekides, C. Wang, C. Q. Wu, H. S. Ullal, “14.6 % Efficient Thin-Film Cadmium Telluride Heterojunction Solar Cells” IEEE Electron Device Letters, 13 (1992) 303. [10]D. Tsiulyanu, A. Tsiulyanu, H. D. Liess, I. Eisele, “Characterization of tellurium-based films for NO2 detection ” Thin Solid Films, 485 (2005) 252. [11]M. Mo, J. Zeng, X. Liu, W.Yu, S. Zhang, Y. Qian, “Controlled hydrothermal synthesis of thin single crystal tellurium nanobelts and nanotubes ” Adv. Mater., 14 (2002) 1658. [12]G. Xi, Y. Peng, W. Yu, Y. Qian, “Synthesis, Characterization, and Growth Mechanism of Tellurium Nanotubes” Cryst. Growth Des., 5 (2005) 325. [13]G. Wei, Y. Deng, Y. H. Lin, C. W. Nan “Solvothermal synthesis of porous tellurium nanotubes” Chem. Phys. Lett., 372 (2003) 590. [14]J. M. Song, Y. Z. Lin, Y. J. Zhan, Y. C. Tian, G. Liu, S. H. Yu, “Superlong High-Quality Tellurium Nanotubes: Synthesis, Characterization, and Optical Property ” Cryst. Growth Des., 8 (2008) 1902. [15]B. Mayers, Y. Xia, “Formation of Tellurium Nanotubes Through Concentration Depletion at the Surfaces of Seeds” Adv. Mater., 14 (2002) 279. [16]H. Steffes, C. Imawn, F. Solzbacher, E. Obermeier, “Fabrication parameters and NO2 sensitivity of reactively RF-sputtered In2O3 thin films ” Sens. Actuators, B, 68 (2000) 249. [17]A. Forleo, L. Francioso, M. Epifani, S. Capone, A. M. Taurino, P. Siciliano, “NO2-gas-sensing properties of mixed In2O3–SnO2 thin films ” Thin Solid Films, 490 (2005) 68. [18]H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, F. R. Zhu, “Nano-crystalline Cu-doped ZnO thin film gas sensor for CO” Sens. Actuators, B, 115 (2006) 247. [19]T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, I. C. Chen, “ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates” Sens. Actuators, B, 125 (2007) 498. [20]D. Patil, P. Patil, V. Subramanian, P. A. Joy, H. S. Potdar, “Highly sensitive and fast responding CO sensor based on Co3O4 nanorods” Talanta, 81 (2010) 37. [21]Y. S. Kim, I. S. Hwang, S. J. Kim, C. Y. Lee, J. H. Lee, “CuO nanowire gas sensors for air quality control in automotive cabin ” Sens. Actuators, B, 135 (2008) 298. [22]Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Y. Li, “O2 and CO sensing of Ga2O3 multiple nanowire gas sensors ” Sens. Actuators, B, 129 (2008) 666. [23]Z. Zeng, K. Wang, Z. Zhang, J. Chen, W. Zhou, “The detection of H2S at room temperature by using individual indium oxide nanowire transistors ” Nanotechnolog, 20 (2009) 045503. [24]D. Tsiulyanu, S. Marian, H. D. Liess, “Sensing properties of tellurium based thin films propylamine and carbon oxide” Sens. Actuators, B, 85 (2002) 232. [25]D. Tsiulyanu, S. Marian, V. Miron, H. D. Liess, “High sensitive tellurium based NO2 gas sensor” Sens. Actuators, B, 73 (2001) 35. [26]D. Tsiulyanu, S. Marian, H. D. Liess, I. Eisele, “Effect of annealing and temperature on the NO2 sensing properties of tellurium based films” Sens. Actuators, B, 100 (2004) 380. [27]S. Sen, K. P. Muthe, N. Joshi, S. C. Gadkari, S. K. Gupta, Jagannath, M. Roy, S. K. Deshpande, J. V. Yakhmi, “Room temperature operating ammonia sensor based on tel[28][28]V. Bhandarkar, S. Sen, K. P. Muthe, M. Kaur, M. S. Kumar, S. K. Deshpande, S. K. Gupta, J. V. Yakhmi, V. C. Sahni, “Effect of deposition conditions on the microstructure and gas-sensing characteristics of Te thin films” Mater. Sci. Eng., B, 131 (2006) 156. [29]T. Siciliano, M. D. Giulio, M. Tepore, E. Filippo, G. Micocci, A. Tepore, “Tellurium sputtered thin films as NO2 gas sensors” Sens. Actuators, B, 135 (2008) 250. [30]V. Kumar, S. Sen, M. Sharma, K. P. Muthe, Jagannath, N. K. Gaur, S. K. Gupta, “Tellurium Nano-Structure Based NO Gas Sensor” Journal of Nanoscience and Nanotechnology, 9 (2009) 5278. [31]S. Sen, M. Sharma, V. Kumar, K. P. Muthe, P. V. Satyam, U. M. Bhatta, M. Roy, N. K. Gaur, S. K. Gupta, J. V. Yakhmi, “Chlorine gas sensors using one-dimensional tellurium nanostructures” Talanta, 77 (2009) 1567. [32]L. S. Brooks, “The Vapor Pressures of Tellurium and Selenium” J. Am. Chem. Soc., 74 (1952) 227. [33]徐國財,張立德,奈米複合材料,化學工業出版社,西元2002。 [34]W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin, “Growth mechanism and growth habit of oxide crystals” J. Cryst. Growth, 203 (1999) 186. [35]A. Umar, Y. B. Hahn, “ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties” Nanotechnology, 17 (2006) 2174. [36]W. Zhu, W. Wang, H. Xu, L. Zhou, L. Zhang, J. Shi, “Controllable, Surfactant-Free Growth of 2D, Scroll-Like Tellurium Nanocrystals via a Modified Polyol Process” Cryst. Growth Des., 6 (2006) 2804. lurium thin films ” Sens. Actuators, B, 98 (2004) 154.
摘要: 
本實驗以氣相傳輸法合成碲奈米管狀結構,並藉由分段實驗來觀察碲奈米管的成長過程且討論其成長機制,再將碲奈米管製成氣體感測元件來量測碲奈米管的氣體感測性能。實驗結果發現,將碲粉與未預鍍上任何觸媒的矽基板放置於水平高溫爐管中,在原料端溫度560℃、基板端溫度110℃及適當的持溫時間等條件下,即可合成碲奈米管狀結構。合成的碲奈米管狀結構,長度約十微米以上,直徑約~600奈米,管壁厚度約80~100奈米。透過XRD、TEM與EDS分析晶體結構與成份,證實奈米管為碲的單晶結構。在成長機制方面,我們藉由SEM觀察碲奈米管在成長過程表面形貌的演變,首先是成核出奈米顆粒,再由這些奈米顆粒成長出橫躺於基板的片狀奈米結構,這些片狀奈米結構覆蓋整個表面之後會開始相互堆疊,有一些會與基板成特定角度,因此會開始往基板平面以外的方向成長。而這些與基板夾角角度較大的片狀奈米結構會慢慢形成三面屏風狀結構,接著三面屏風狀結構會先發展成四面溝槽狀結構,再發展成六面溝槽狀結構,六面溝槽狀結構最終會閉合形成奈米管狀結構。在氣體感測性能測試方面,我們可以在室溫下偵測到低濃度的CO與NO2氣體,並且可以同時偵測兩種氣體。因此,碲奈米管狀結構具有很大的潛力應用於監測CO與NO2氣體的感測元件。

We have synthesized tellurium nanotubes by a vapor transport process and carefully investigated the growth mechanism of tellurium nanotubes by examining their structural evolution during the synthesis process. The CO and NO2 gas sensing properties of the tellurium nanotubes-based gas sensor devices were also measured. The tellurium nanotubes can be synthesized on Si substrates without using metal catalysts in a horizontal furnace. The optimum source and substrate temperatures were 560℃ and 110℃, respectively. The typical diameters of tellurium nanotubes were ~600 nm, the thickness of the tube walls were about 80~100 nm and the lengths were up to 10 um. The as-deposited products were confirmed to be single-crystalline trigonal Te with hexagonal cross-section grown along the [0001] direction. The growth mechanism of tellurium nanotubes can be divided into several steps. First, Te nanoparticles are nucleated on the Si substrate in the initial stage. Then these nanoparticles will gradually develop into the sheet-like structure (nanosheets) lying horizontally on the substrate. After these nanosheets cover the entire surface and they will stack with each other. Some of the nanosheets which have certain horizontal angles with respect to the substrate surface will begin to grow out of the substrate, and gradually develop into three-face screen-like nanostructures. As the Te source atoms are kept supplying, these three-face screen-like nanostructures will subsequently evolve to four-face and six-face groove-like nanostructures. Eventually, the six-face groove-like nanostructures will close the small gaps to grow into nanotubes. The gas sensor device fabricated by tellurium nanotubes exhibited the capabilities of detecting low-concentration CO and NO2 gases at room temperature. In addition, the CO and NO2 gases can be simultaneously detected by tellurium nanotubes based gas sensors. Therefore, tellurium nanotubes have a great potential for applications for CO and NO2 gas sensors.
URI: http://hdl.handle.net/11455/10155
其他識別: U0005-1207201114431300
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.