Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.advisorYung-Chiun Heren_US
dc.contributor.authorHuang, Sing-Linen_US
dc.identifier.citation參考文獻 [1]P. Mohanty, T. Kang, B. Kim, “Synthesis of Single Crystalline Tellurium Nanotubes with Triangular and Hexagonal Cross Sections” J. Phys. Chem. B, 110 (2006) 791. [2]S. Sen, U. M. Bhatta, V. Kumar, K. P. Muthe, S. Bhattacharya, S. K. Gupta, J. V. Yakhmi, “Synthesis of Tellurium Nanostructures by Physical Vapor Deposition and Their Growth Mechanism” Cryst. Growth Des., 8 (2008) 238. [3]T. Siciliano, E. Filippo, A. Genga, G. Micocci, “Single-crystalline Te microtube: Synthesis and NO2 gas sensor application” Sens. Actuators, B 142 (2009) 185. [4]W. Xu, J. Song, L. Sun, J. Yang, W. Hu, Z. Ji, S. H. Yu, “Structural, Electrical, and Photoconductive Properties of Individual Single-Crystalline Tellurium Nanotubes Synthesized by a Chemical Route: Doping Effects on Electrical Structure” Small, 4 (2008) 888. [5]A. M. Phahle, “Electrical properties of thermally evaporated tellurium films” Thin Solid Films, 41 (1977) 235. [6]P. G. Chavan, S. S. Patil, M. A. More, “Field emission studies of Te nanorods grown on Si (111) substrate” Vacuum, 83 (2009) 1307. [7]S. H. Lee, D. K. Ko, Y. Jung, R. Agarwal, “Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires” Appl. Phys. Lett., 89 (2006) 223116. [8]X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu, X. B. Zhang, “Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites” Appl. Phys. Lett., 86 (2005) 062111. [9]T. L. Chu, S. Chu, J. Britt, C. Ferekides, C. Wang, C. Q. Wu, H. S. Ullal, “14.6 % Efficient Thin-Film Cadmium Telluride Heterojunction Solar Cells” IEEE Electron Device Letters, 13 (1992) 303. [10]D. Tsiulyanu, A. Tsiulyanu, H. D. Liess, I. Eisele, “Characterization of tellurium-based films for NO2 detection ” Thin Solid Films, 485 (2005) 252. [11]M. Mo, J. Zeng, X. Liu, W.Yu, S. Zhang, Y. Qian, “Controlled hydrothermal synthesis of thin single crystal tellurium nanobelts and nanotubes ” Adv. Mater., 14 (2002) 1658. [12]G. Xi, Y. Peng, W. Yu, Y. Qian, “Synthesis, Characterization, and Growth Mechanism of Tellurium Nanotubes” Cryst. Growth Des., 5 (2005) 325. [13]G. Wei, Y. Deng, Y. H. Lin, C. W. Nan “Solvothermal synthesis of porous tellurium nanotubes” Chem. Phys. Lett., 372 (2003) 590. [14]J. M. Song, Y. Z. Lin, Y. J. Zhan, Y. C. Tian, G. Liu, S. H. Yu, “Superlong High-Quality Tellurium Nanotubes: Synthesis, Characterization, and Optical Property ” Cryst. Growth Des., 8 (2008) 1902. [15]B. Mayers, Y. Xia, “Formation of Tellurium Nanotubes Through Concentration Depletion at the Surfaces of Seeds” Adv. Mater., 14 (2002) 279. [16]H. Steffes, C. Imawn, F. Solzbacher, E. Obermeier, “Fabrication parameters and NO2 sensitivity of reactively RF-sputtered In2O3 thin films ” Sens. Actuators, B, 68 (2000) 249. [17]A. Forleo, L. Francioso, M. Epifani, S. Capone, A. M. Taurino, P. Siciliano, “NO2-gas-sensing properties of mixed In2O3–SnO2 thin films ” Thin Solid Films, 490 (2005) 68. [18]H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, F. R. Zhu, “Nano-crystalline Cu-doped ZnO thin film gas sensor for CO” Sens. Actuators, B, 115 (2006) 247. [19]T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, I. C. Chen, “ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates” Sens. Actuators, B, 125 (2007) 498. [20]D. Patil, P. Patil, V. Subramanian, P. A. Joy, H. S. Potdar, “Highly sensitive and fast responding CO sensor based on Co3O4 nanorods” Talanta, 81 (2010) 37. [21]Y. S. Kim, I. S. Hwang, S. J. Kim, C. Y. Lee, J. H. Lee, “CuO nanowire gas sensors for air quality control in automotive cabin ” Sens. Actuators, B, 135 (2008) 298. [22]Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Y. Li, “O2 and CO sensing of Ga2O3 multiple nanowire gas sensors ” Sens. Actuators, B, 129 (2008) 666. [23]Z. Zeng, K. Wang, Z. Zhang, J. Chen, W. Zhou, “The detection of H2S at room temperature by using individual indium oxide nanowire transistors ” Nanotechnolog, 20 (2009) 045503. [24]D. Tsiulyanu, S. Marian, H. D. Liess, “Sensing properties of tellurium based thin films propylamine and carbon oxide” Sens. Actuators, B, 85 (2002) 232. [25]D. Tsiulyanu, S. Marian, V. Miron, H. D. Liess, “High sensitive tellurium based NO2 gas sensor” Sens. Actuators, B, 73 (2001) 35. [26]D. Tsiulyanu, S. Marian, H. D. Liess, I. Eisele, “Effect of annealing and temperature on the NO2 sensing properties of tellurium based films” Sens. Actuators, B, 100 (2004) 380. [27]S. Sen, K. P. Muthe, N. Joshi, S. C. Gadkari, S. K. Gupta, Jagannath, M. Roy, S. K. Deshpande, J. V. Yakhmi, “Room temperature operating ammonia sensor based on tel[28][28]V. Bhandarkar, S. Sen, K. P. Muthe, M. Kaur, M. S. Kumar, S. K. Deshpande, S. K. Gupta, J. V. Yakhmi, V. C. Sahni, “Effect of deposition conditions on the microstructure and gas-sensing characteristics of Te thin films” Mater. Sci. Eng., B, 131 (2006) 156. [29]T. Siciliano, M. D. Giulio, M. Tepore, E. Filippo, G. Micocci, A. Tepore, “Tellurium sputtered thin films as NO2 gas sensors” Sens. Actuators, B, 135 (2008) 250. [30]V. Kumar, S. Sen, M. Sharma, K. P. Muthe, Jagannath, N. K. Gaur, S. K. Gupta, “Tellurium Nano-Structure Based NO Gas Sensor” Journal of Nanoscience and Nanotechnology, 9 (2009) 5278. [31]S. Sen, M. Sharma, V. Kumar, K. P. Muthe, P. V. Satyam, U. M. Bhatta, M. Roy, N. K. Gaur, S. K. Gupta, J. V. Yakhmi, “Chlorine gas sensors using one-dimensional tellurium nanostructures” Talanta, 77 (2009) 1567. [32]L. S. Brooks, “The Vapor Pressures of Tellurium and Selenium” J. Am. Chem. Soc., 74 (1952) 227. [33]徐國財,張立德,奈米複合材料,化學工業出版社,西元2002。 [34]W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin, “Growth mechanism and growth habit of oxide crystals” J. Cryst. Growth, 203 (1999) 186. [35]A. Umar, Y. B. Hahn, “ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties” Nanotechnology, 17 (2006) 2174. [36]W. Zhu, W. Wang, H. Xu, L. Zhou, L. Zhang, J. Shi, “Controllable, Surfactant-Free Growth of 2D, Scroll-Like Tellurium Nanocrystals via a Modified Polyol Process” Cryst. Growth Des., 6 (2006) 2804. lurium thin films ” Sens. Actuators, B, 98 (2004) 154.zh_TW
dc.description.abstractWe have synthesized tellurium nanotubes by a vapor transport process and carefully investigated the growth mechanism of tellurium nanotubes by examining their structural evolution during the synthesis process. The CO and NO2 gas sensing properties of the tellurium nanotubes-based gas sensor devices were also measured. The tellurium nanotubes can be synthesized on Si substrates without using metal catalysts in a horizontal furnace. The optimum source and substrate temperatures were 560℃ and 110℃, respectively. The typical diameters of tellurium nanotubes were ~600 nm, the thickness of the tube walls were about 80~100 nm and the lengths were up to 10 um. The as-deposited products were confirmed to be single-crystalline trigonal Te with hexagonal cross-section grown along the [0001] direction. The growth mechanism of tellurium nanotubes can be divided into several steps. First, Te nanoparticles are nucleated on the Si substrate in the initial stage. Then these nanoparticles will gradually develop into the sheet-like structure (nanosheets) lying horizontally on the substrate. After these nanosheets cover the entire surface and they will stack with each other. Some of the nanosheets which have certain horizontal angles with respect to the substrate surface will begin to grow out of the substrate, and gradually develop into three-face screen-like nanostructures. As the Te source atoms are kept supplying, these three-face screen-like nanostructures will subsequently evolve to four-face and six-face groove-like nanostructures. Eventually, the six-face groove-like nanostructures will close the small gaps to grow into nanotubes. The gas sensor device fabricated by tellurium nanotubes exhibited the capabilities of detecting low-concentration CO and NO2 gases at room temperature. In addition, the CO and NO2 gases can be simultaneously detected by tellurium nanotubes based gas sensors. Therefore, tellurium nanotubes have a great potential for applications for CO and NO2 gas sensors.en_US
dc.description.tableofcontents目次 摘要 I Abstract Ⅱ 目次 Ⅲ 圖目次 Ⅳ 表目次 Ⅵ 第一章 、緒論 1 第二章 、文獻回顧 2 2.1 碲的特性與應用 2 2.2 一維碲奈米管的製備與研究概況 3 2.3 一維碲奈米管的成長機制 4 2.4 碲奈米結構在氣體感測的應用 11 2.5 研究動機與目的 16 第三章 、實驗方法與步驟 17 3.1 實驗設計 17 3.2 基板準備與前處理 19 3.3 氣相傳輸法 19 3.4 表面形貌的觀察 20 3.5 晶體結構分析 20 3.6 表面成份分析 21 3.7 氣體感測元件的製作與特性量測 21 第四章 、結果與討論 22 4.1 製程參數的影響 22 4.1.1 原料端溫度的影響 22 4.1.2 基板端溫度的影響 24 4.1.3 不同基板位置的影響 27 4.1.4 持溫時間的影響 29 4.1.5 不同基板材料的的影響 31 4.2 晶體結構與成份分析 33 4.3 碲奈米管成長機制 38 4.4 氣體感測 44 第五章 、結論 48 參考文獻 49zh_TW
dc.subjectgas sensoren_US
dc.titleGrowth mechanism and gas sensing properties of tellurium nanotubes grown by vapor transport processen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:材料科學與工程學系
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.