Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10166
標題: Low-temperature hydrothermal synthesize of In2O3 and Sn-doped In2O3 nanocubes
以低溫水熱法合成氧化銦與錫摻雜氧化銦奈米立方體
作者: Chin-Feng
楊錦鳳
關鍵字: hydrothermal;水熱法;In2O3;nanocubes;氧化銦;奈米立方體
出版社: 材料科學與工程學系所
引用: [1]J.Z.Z. Wang, A.Grots, X. He, Solid State Communications, 144, 118 (2007). [2]N. Dougami, T. Takada, Sensors and Actuators, B 93, 316 (2003). [3]G. Jo, W.K. Hong, J. Maeng, T.W. Kim, G. Wang, A. Yoon, S.S. Kwon, S. Song, T. Lee, Colloids and Surfaces A: Physicochem. Eng. Aspects 313, 308 (2008). [4]J. H. W. De Wit, Journal of Solid State Chemistry , 20, 143 (1977). [5]H. Yamaura, K. Moriya, N. Miura, N. Yamazoe, Sensors and Actuators, B 65, 39 (2000). [6]M. Epifani, E. Comini, J. Arbiol, R. D′ıaz, N. Sergent, T. Pagnier, P. Siciliano, G. Faglia, J.R. Morante, Sensors and Actuators, B 130, 483 (2008). [7]C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, C. Zhou, Appl. Phys. Lett. 82, 1613 (2003). [8]C. Cantalini, W. Wlodarski, H.T. Sun, M.Z. Atashbar, M. Passacantando, A.R. Phani, S. Santucci, Thin Solid Films, 350, 276 (1999). [9]C. Li, D. Zhang, S. Han, X. Liu, T. Tang, B. Lei, Z. Liu, C. Zhou, Ann. N.Y. Acad. Sci., 1006, 104 (2003). [10]A.El Hichou, A.Kachouane, J.L.Bubendorff, M.Addou , J.Ebothe, M.Troyon, A.Bougrine , Thin Solid Films, 458, 263 (2004). [11]G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Sensors and Actuators B 132, 224 (2008). [12]淺談納米材料結構性質及其半導體特性 遼寧信息職業技術學院 王玉艳 [13]J. Kim, W. A. Anderson, Nano Lett., 6(7), 1356 (2006). [14]氧化鋅奈米線陣列/奈米粒複合膜於染料敏化型太陽能電池之應用 國立成功大學化工系 吳季珍等 [15]S.S. Sun, Solar Energy Materials & Solar Cells, 85, 261 (2005). [16]T. Stergiopoulos, S. Karakostas, P. Falaras, Journal of Photochemistry and Photobiology A: Chemistry, 163, 331 (2004). [17]Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.H. Kim, C.M. Lieber, Science, 294 , 1313 (2001). [18]S. Iijima, Nature, 354, 56 (1991). [19]S. Aravamudhan, A. Kumar, S. Mohapatra, S. Bhansali, Biosensors and Bioelectronics, 22, 2289 (2007). [20]Y. Lu , R.J. Knize, Applied Surface Science, 254, 1211 (2007). [21]A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature, 451, 163 (2008). [22]D. Wang, Nano letters, 7, 323 (2007). [23]N.A. Melosh, A. Boukai, F. Diana,B. Gerardot, A. Badolato, P.M. Petroff, J.R. Heath, Science, 300, 112 ( 2003). [24]A. Hu, X. Yao, M. Winter, H. Zhou, N. Sakai, M.R. Koblischka, M. Murakami, I. Hirabayashi, Physica, C 426, 441 (2005). [25]A. Ambrosini, A. Duarte, K.R. Poeppelmeier, Journal of Solid State Chemistry , 153, 41 (2000). [26]T.O. Mason, G.B. Gonzalez, D.R. Kammler, N. Mansourian-Hadavi, B.J. Ingram, Thin Solid Films, 411, 106 (2002). [27]C. Liang, G. Meng, Y. Lei, F. Phillipp, L. Zhang, Adv. Mater., 13, 1330 (2001). [28]S. Q. Li, Y. X. Liang, T. H. Wang, Appl. Phys. Lett., 87, 143104 (2005). [29]取向和非取向In2O3納米線的場發射研究 福州大學電子科學與應用物理系 胡利勤等 [30]J. Xu, X. Wang, J. Shen, Sensors and Actuators, B 115, 642 (2006). [31]以靜電霧化沉積法鍍製氧化錫氣體偵測薄膜 國立中山大學 碩士論文 柯日弘 [32]V. Brinzari, G. Korotcenkov, M. Ivanov, V. Nehasil, V. Matolin, K. Makšek, M. Kamei, Surface Science, 601, 5585 (2007). [33]Y.X. Chen, M. Lewis, W.L. Zhou, Journal of Crystal Growth, 282, 85 (2005). [34]Y. Kajikawa, S. Noda, Applied Surface Science, 245, 281 (2005). [35]Z.Y. Yuan, B.L. Su, Colloids and Surfaces A: Physicochem. Eng. Aspects, 241, 173 (2004). [36]M. Motoyama, Y. Fukunaka, T. Sakka, Y. H. Ogata, S. Kikuchi, Journal of Electroanalytical Chemistry, 584, 84 (2005). [37]K. Zhu, H. He, S. Xie, X. Zhang, W. Zhou, S. Jin, B. Yue, Chemical Physics Letters, 377, 317 (2003). [38]L. Dong, Y. Chu, Y. Zhang, Materials Letters, 61, 4651 (2007). [39]R. Yoshida, Y. Suzuki, S. Yoshikawa, Journal of Solid State Chemistry, 178, 2179 (2005). [40]K. W. Kolasinski, Current Opinion in Solid State and Materials Science, 10, 182 (2006). [41]N. Du, H. Zhang, H. Sun, D. Yang, Materials Letters, 61, 235 (2007). [42]T.S. Ko, C.P. Chu, J.R. Chen, T.C. Lu, H.C. Kuo, S.C. Wang, Journal of Crystal Growth, 310, 2264 (2008). [43]T. Gaoa, T. Wang, Journal of Crystal Growth, 290, 660 (2006) [44]J. Zhang, X. Qing, F. Jiang, Z. Dai, Chemical Physics Letters, 371, 311 (2003). [45]C.Y. Kuo, S.Y. Lu, T.Y. Wei, Journal of Crystal Growth, 285, 400 (2005). [46]Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, Y. Qian, Crystal Growth & Design, 5, 147 (2005). [47] J.X. Wang, H.Y. Chen, Y. Gao, D.F. Liu, L. Song, Z.X. Zhang, X.W. Zhao, X.Y. Dou, S.D. Luo, W.Y. Zhou, G. Wang, S.S. Xie, Journal of Crystal Growth, 284, 73 (2005). [48]H. Zhang, X. Ren, Z. Cui, Journal of Crystal Growth, 304, 206 (2007). [49]D. Chen, L. Gao, Journal of Crystal Growth, 264, 216 (2004). [50]以低溫水熱法生長二氧化錫奈米葉片及其在光光譜儀下之藍光現象 國立中興大學 碩士論文 吳哲耀 [51]二氧化錫奈米葉片的光激發藍光機制以及銦摻雜氧化錫奈米葉片的合成 國立中興大學 碩士論文 蔡鎮燦 [52]氧化銦納米粉制備及表徵研究 南京工業大學材料科學與工程學院 呂軍華等
摘要: 
本研究是以水熱法低溫合成出大面積氧化銦(In2O3)和錫摻雜氧化銦(Sn-doping In2O3)奈米結構。實驗中是以二次去離子水(MilliQ water)為溶劑,所使用之前驅物為InCl3‧4H2O、尿素(NH2)2CO和PVP,經由超音波振盪器將含有前驅物之溶液均勻混合後,放入矽晶片基板於烘箱持溫一段時間。實驗結果發現,以InCl3‧4H2O、尿素(NH2)2CO和PVP為實驗配方,在90°C沉積24h,可以在矽基板順利合成出大面積的In2O3奈米立方結構(nanocubes)。初合成的In2O3奈米立方晶體(nanocubes)長度大約在500-600nm,透過XRD、ESCA和TEM的儀器檢驗,證明其確實為氧化銦的立方鐵錳礦(bixbyite structure)結構,屬於立方晶系(cubic)結構。除此之外,我們也以InCl3‧4H2O、SnCl4‧5H2O、尿素(NH2)2CO和PVP為實驗配方,在90°C沉積24h,可以在矽晶片基板順利合成出大面積的Sn-doped In2O3奈米結構,由EDS、XRD、ESCA、FTIR和TEM的分析,可以確定In2O3奈米結構中確實有錫成份的存在,而且錫的摻雜量約在3-5at%左右。

This research involves low-temperature hydrothermal synthesis of nano structured In2O3 and Sn-doping In2O3 in large superficial measure. In lab experiment, MilliQ water is employed as solvent while urea, PVP and InCl3∙4H2O as precursors. Ultrasonicator is used to well mix precursor-contained solution, which is then transferred to silicon substrates and hold temperature in oven for a period. Experiment result indicates that through a 24-hour deposition at 90C, the recipe of InCl3∙4H2O, urea and PVP is able to synthesis large area of In2O3 nanocubes on Silicon substrates. Initially synthesized In2O3 nanocubes possesses a length between 500-600 nm. Inspected by XRD, ESCA and TEM, the nanocubes are confirmed as bixbyite structure of In2O3, which is a cubic structure system. Furthermore, through 24-hour deposition at 90C, an alternative recipe of InCl3∙4H2O, SnCl4∙5H2O, urea and PVP synthesized large area of Sn-doped In2O3 nanocubes on Silicon substrates. Via analysis and inspection using EDS, XRD, ESCA, FTIR and TEM, it is confirmed that tin exists among In2O3 nanocubes with a doping content 3-5 at%.
URI: http://hdl.handle.net/11455/10166
其他識別: U0005-1302200716452300
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.