Please use this identifier to cite or link to this item:
標題: 反射基板型砷化鎵太陽電池之模擬分析與驗證
Simulation and Verification of GaAs Solar Cells with Mirror Substrates
作者: 倪赫擎
Ni, He-Ching
關鍵字: GaAs;砷化鎵;Solar cells;Substrate transferring;Device simulation;太陽電池;基板轉移;元件模擬
出版社: 材料科學與工程學系所
引用: [1]D. A. Janny, J. J. Loferski, and P. Rappaport, “The Status of Transistor Research in Compound Semiconductors”, Physical Review, 101, pp.1208, 1 Feb 1956 [2]B. Burnett, “The Basic Physics and Design of Ⅲ-Ⅴ Multijunction Solar Cells”, the NREL’s Ⅲ-Ⅴ research, 2002. [3]Richard R. King et al., “Advances in High-Efficiency Ⅲ-Ⅴ Multijunction Solar Cells”, Advances in OptoElectronics, Article ID 29523, pp.8, 2007. [4]R. R. King, D. C. Law, K. M. Edmondson, et al., “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Appl. Phys. Lett., 90, pp.3, 2007 [5]J. F. Geisz et al., “High-efficiency GaInP/GaAs/InGaAs triplejunction solar cells grown inverted with a metamorphic bottom junction”, Appl. Phys. Lett., 91, Article ID 023502, 2007 [6]Tomoya Kodama et al., “Development of Space Solar Sheet”, Technical Digest of the International PVSEC-17, Fukuoka, Japan, 6O-B11-03, 2007 [7]H. Yamaguchi et al., “Investigation on non-ohmic properties for thin film InGap/GaAs solar cell”, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, 2, pp.1805-1807, 2006 [8]T. Takamoto et al., “Paper-Thin InGaP/GaAs Solar Cells”, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, 2, pp. 1769-1772, 2006 [9]J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial Lift-Off for large area thin film Ⅲ/Ⅴ devices”, phys. Stat. sol.(a) 202, No.4, pp. 501-508, 2005 [10]J. J. Schermer, P. Mulder, G. J. Bauhuis, P. K. Larsen, G. Oomen and E. Bongers, “Thin-film GaAs Epitaxial Lift-off Solar Cells for Space Applications”, Prog. Photovolt: Res. Appl., 13, pp.587-596, 2005 [11]Hery W. Brandhorst, “Evolution of space solar cell and array technology for the next decade”, Technical Digest of the International PVSEC-17, Fukuoka, Japan, 6O-B11-01, 2007 [12]T. Takamoto, M. Kaneiwa, M. Imaizumi and M. Yamaguchi, Prog. Photovolt: Res. Appl., 13, pp.495-511, 2005 [13]H. J. Moller, “Semiconductor for solar cell”, Artech House, Boston, 1993 [14]陳頤承I. C. Chen, 郭昭顯C. H. Kuo, 陳俊亨C. H. Chen, “工業材料雜誌”, 258期, pp.249–256, June, 2008 [15]Stephen T. Thornton, Andrew Rex, “Modern Physics for Scientists and Engineers”, 3rd. Thomson Books/Cole, June, 2006 [16]R. H. Bube, “Electronic Properties of Crystalline Solids”, Academic Press, New York, 1974 [17]P. Bhattacharya, “Semiconductor Optoelectronic Devices”, Prentice-Hall, Englewood Cliffs, pp.119-131, 1994 [18]S. R. Kurtz, J. M. Olson, D. J. Friedman, J. F. Geisz, and A. E. Kibbler, “Passivation of Interfaces in High-Efficiency Photovoltaic Devices”, presented at the Materials Research Society’s Spring Meeting, San Francisco California, April 5-9, 1999 [19]S. Adachi, H. Kato, “Refractive index of (AIxGa1-x)0.5In0.5P quaternary alloys”, J. Appl. Phys., 75, pp.478-480, 1994 [20]D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs”, J. Appl. Phys., 60, pp.755-767, 1986 [21]Sze, S. M, “Semiconductor Devices: Physics and Technology”, 2nd ed. John Wiley and Sons, New York, 2001 [22]D. A. Neamen, “Semicondutor Physics & Devices: Basic Principle”, 3rd ed. McGraw-Hill Inc., 2006 [23]莊嘉琛, 太陽能工程-太陽電池篇, 全華, 台北市, 民86年 [24]李正中, 薄膜光學與鍍膜技術, 第五版, 藝軒, 台北市, 民國95年 [25]D. S. H. Chan, and J. C. H. Phang, “Analytical Methods for the Extraction of Solar-Cell Single- and Double-Diode Model Parameters from I-V Characteristics,” IEEE Trans. Electron Devices, 34, pp.286-293, Feb 1987 [26]M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates”, J. Appl. Phys., 58, pp.3601, 1985 [27]C. L. Andre, J. J. Boeckl, D. M. Wilt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates”, Appl. Phys. Lett., 84, pp.3447-3449, 3 May 2004 [28]C. L. Andre, D. M. Wilt, A. J. Pitera, M. L. Lee, and E. A. Fitzgerald, “Impact of dislocation densities on n+/p and p+/n junction GaAs diodes and solar cells on SiGe virtual substrates”, J. Appl. Phys., 98, 2005 [29]T. Shitara and K. Eberl, “Electronic properties of InGaP grown by solid-source molecular-beam epitaxy with a GaP decomposition source”, Appl. Phys. Lett., 65, pp.356-358, 1994 [30]M. Ikeda, K. Kaneko, “Selenium and zinc doping in Ga0.5In0.5P and (Al0.5Ga0.5)0.5In0.5P grown by metalorganic chemical vapor deposition”, J.Appl. Phys, 66, pp.5285-5289 ,1989 [31]Aspnes, D. E., Surface Sci. 132, 1-3, pp.406-421, 1983 [32]S. J. Pearton, F. Ren, W. S. Hobson, C. R. Abernathye, U. K. Chakrabarti, J.Vac. Sci. Technol., B12, pp.143-146 ,1994 [33]Abderrahmane Belghachi, Abderrachid Helmaoui, Solar Energy Materials & Solar Cells, 92, pp.667-672, 2008 [34]J. Mandelkorn and J. H. Lamneck, Jr., 9th Photovoltaic Specialists’ Conf., 2-3 May 1972 [35]J. Zhao and Martin A. Green, “Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells”, IEEE Trans. Electron Devices, 38, pp1925-1934, 1991 [36]鍾迪生, 真空鍍膜, 遼寧大學出版社, 民國90年 [37]雷永泉, 新能源材料, 新文京開發出版社, 民國93年 [38]J. C. H. Phang, D. S. H. Chan, and J. R. Phillips, “Accurate analytical method for the extraction of solar cell model parameters,” Electron. Lett., 20, pp.406-408, 1984 [39]K. L. Kennerud, “Analysis of performance degradation in CdS solar cells”, ibid., AES-5, pp.912-917, 1969 [40]林喬楨, 具有銅基板之砷化鎵太陽電池製作與特性研究, 國立中興大學材料科學與工程研究所碩士論文, 民國97年
This thesis described the simulation and verification results of GaAs solar cells. Two kinds of cell structures were compared: one is the GaAs solar cell on a GaAs substrate, and the other the GaAs solar cell transferred onto a copper substrate by electroplating. Both the experimental and simulation results were compared, where the simulation calculation was based on the theory of semiconductor device physics, and was calculated by the numerical Mathematica computing software. Some of the simulation was verified using a commercial software, i.e. Crosslight. Details of the advantages, weaknesses, and feasibility of the substrate transferring technique were also disscussed.
According to the simulated results, it was found that the incident light was not fully absorbed in the solar cell due to a thinner base layer. The un-absorbed incident light could be further reflected by a AuGe/Au mirror layer and absorbed again by the base layer. Thus the disadvantage of the GaAs thin-film cell with a thinner base layer could be solved by the additional reflection from the AuGe/Au mirror with a high reflectivity within 800~1000 nm wavelength. Moreover, the external quantum efficiency in the long wavelength region and short current density (Jsc) were also increased.
In our experimental results, we have transferred the GaAs solar cells from GaAs substrates onto the mirror-coated copper substrates with the base layer thickness of 1.5 μm. The photovoltaic performance of the orginal GaAs solar cell on a GaAs substrate was also measured. Under AM1.5G and without anti-reflective coatings conditions, it is found that the Jsc can increase from 12.6 mA/cm2 to 13.82 mA/cm2, while the conversion efficiency (η) can improve from 7.91% to 8.53%. As a result, the enhanced Jsc and η data of the GaAs solar cells can be contributed by the AuGe/Au mirror between the GaAs solar cell and copper substrate.

在實驗驗證方面,本實驗室將砷化鎵太陽電池由砷化鎵基板轉移至銅基板上,在基極厚度1.5 μm、AM 1.5G、以及元件未披覆抗反射膜的條件下,短路電流密度可由12.6 mA/cm2提升至13.82 mA/cm2,增加9.7%,而轉換效率則可由7.91%提升為8.53%,這結果顯示當砷化鎵太陽電池基極底部鍍有金屬反射層時,的確能適度地提升太陽電池的短路電流密度及轉換效率。
其他識別: U0005-1306200623201300
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.