Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10173
標題: 鼠緻密骨組織奈米尺度機械性質與變形行為之研究
Nanomechanical Properties and Deformation Behaviors of Cortical Bone Tissue of Mice
作者: 王盈婷
Wang, Ying-Ting
關鍵字: bone;骨骼;mechanical property;deformation;機械性質;變形
出版社: 材料科學與工程學系所
引用: [1] L. Tombolato, E. E. Novitskaya, P.Y. Chen, F. A. Sheppard and J. McKittrick, “Microstructure, elastic properties and deformation mechanisms of horn keratin”, Acta Biomater., 6(2) (2010) 319-330. [2] P.Y. Chen, A.G. Stokes and J. McKittrick, “Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis)”, Acta Biomater., 5(2) (2009) 693-706. [3] M. L. Oyen, “Nanoindentation hardness of mineralized tissues” J. Biomech., 39(14) (2006) 2699-2702. [4] O. D. Kennedy, O. Brennan, P. Mauer, S. M. Rackard, F. J. O''Brien, D. Taylor and T. C. Lee, “The effects on increased intracortical remodeling on microcrack behaviour in compact bone”, Bone, 47(5) (2010) 241-247. [5] M. A. Rubin and I. Jasiuk, “The TEM characterization of the lamellar structure of osteoporotic human trabecular bone”, Micron, 36(7-8) (2005) 653-664. [6] M. A. Rubin, I. Jasiuk, J. Taylor, J. Rubin, T. Ganey and R. P. Apkarian, “TEM analysis of the nano structure of normal and osteoporotic human trabecular bone”, Bone, 33(3) (2003) 270-282. [7] Z. Li, W. W. Lu, L. Deng, P. K. Y. Chiu, D. Fang, R. W. M. Lam, J. C. Y. Leong and K. D. K. Luk, “The morphology and lattice structure of bone crystal after strontium treatment in goats”, J. Bone Miner. Metab., 28(1) (2010) 25-34. [8] V. C. Shunmugasamy, N. G. and P. G. Coelho, “High strain rate response of rabbit femur bones”, J. Biomech., 43(15) (2010) 3044-3050. [9] J. S. Stolken and J. H. Kinney, “On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure”, Bone, 33(4) (2003) 494-504. [10] M. M. Barak, S. W. and R. Shahar, “Importance of the integrity of trabecular bone to the relationship between load and deformation of rat femora: an optical metrology study”, J. Mater. Chem., 18(32) (2008) 3855-3864. [11] C. Mercer, M.Y. He, R. Wang and A.G. Evans, “Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone”, Acta Biomater., 2(1) (2006) 59-68. [12] L. P. Mullins, V. Sassi, P. E. Mchugh and M. S. Bruzzi, “Differences in the crack resistance of interstitial, osteonal and trabecular bone tissue”, Ann. Biomed. Eng., 37(12) (2009) 2574-2582. [13] A. Stanishevsky, S. Chowdhury, P. Chinoda and V. Thomas, “Hydroxyapatite nanoparticle loaded collagen fiber composites: Microarchitecture and nanoindentation study”, J. Biomed. Mater. Res. Part A, 86A(4) (2007) 873-882. [14] M. J. Olszta, X. Cheng, S. S. Jee, R. Kumar, Y.Y. Kim, M. J. Kaufman, E. P. Douglas and L. B. Gower, “Bone structure and formation: A new perspective”, Mat. Sci. Eng. R, 58(3-5) (2007) 77–116. [15] J. Y. Rho, L. K. Spearing and P. Zioupos, “Mechanical properties and the hierarchical structure of bone”, Med. Eng. Phys., 20(2) (1998) 92-102. [16] R. O. Ritchie, M. J. Buehler and P. Hansma, “Plasticity and toughness in bone”, Phys. Today, 62(6) (2009) 41-47. [17] A. C. Guyton and J. E. Hall, “Human physiology and mechanisms of disease, (Sixth edition)”, 賴全亮、林則彬、林富美 編譯,“蓋統生理學-生理與疾病機轉”,華杏出版股份有限公司,台北市 (1998) p. 932-938。 [18] W. F. Ganong, “Review of medical physiology, (Seventeenth edition)”, 楊明杰 編譯,“醫學生理學”,合記圖書出版社,台北市 (1990) p.450-454。 [19] K. S. Chan, C. K. Chan and D. P. Nicolella, “Relating crack-tip deformation to mineralization and fracture resistance in human femur cortical bone”, Bone, 45(3) (2009) 427-434. [20] B. L. Riggs and L. J. Melton III, “Osteoporosis:Etiology, diagnosis and management, (Second edition)”, 楊榮森 編譯,“骨質疏鬆症:病因、診斷、治療”,合記圖書出版社,台北市 (1997) p.65-68。 [21] D. Taylor, J. G. Hazenberg and T. C. Lee, “Living with cracks: Damage and repair in human bone”, Nat. Mater., 6(4) (2007) 263-268. [22] D. Arola, D. Bajaj, J. Ivancik, H. Majd and D. Zhang, “Fatigue of biomaterials: Hard tissues”, Int. J. Fatigue, 32(9) (2010) 1400-1412. [23] 傅宇輝 等編譯,“骨科學原理及應用”,國立編譯館,台北市 (1987) p.325-327. [24] J. S. Nyman, A. Roy, R. L. Acuna, H. J. Gayle, M. J. Reyes, J. H. Tyler, D. D. Dean and X. Wang, “Age-related effect on the concentration of collagen crosslinks in human osteonal and interstitial bone tissue”, Bone, 39(6) (2006) 1210-1217. [25] J. M. O''Neal, T. Diab, M. R. Allen, B. Vidakovic, D. B. Burr and R. E. Guldberg, “One year of alendronate treatment lowers microstructural stresses associated with trabecular microdamage initiation”, Bone, 47(2) (2010) 241-247. [26] C. H. Turner, “Bone strength: Current concepts”, Ann. NY Acad. Sci., 1068 (2006) 429-446. [27] M. J. Buehler, S. Keten and T. Akbarow, “Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture”, Prog. Mater. Sci., 53(8) (2008) 1101-1241. [28] R. O. Ritchie, “How does human bone resist fracture ?”, Ann. NY Acad. Sci., 1192 (2010) 72-80. [29] R. O. Ritchie, J. H. Kinney, J. J. Kruzic and R. K. Nalla, “A fracture mechanics and mechanistic approach to the failure of cortical bone”, Fatigue Fract. Eng. Mater. Struct., 28(4) (2005) 345-371. [30] M. A. Meyers, P.Y. Chen, A. Y.M. Lin and Y. Seki, “Biological materials: Structure and mechanical properties”, Prog. Mater. Sci., 53 (2008) 1–206. [31] H. Peterlik, P. Roschger, K. Klaushofer and P. Fratzl, “From brittle to ductile fracture of bone”, Nat. Mater., 5(1) (2006) 52-55. [32] M. J. Buehler and T. Ackbarow, “Fracture mechanics of protein materials”, Mater. Today, 10(9) (2007) 46-58. [33] M. E. Launey and R. O. Ritchie, “On the fracture toughness of advanced materials” Adv. Mater., 21(20) (2009) 2103–2110. [34] M. E. Launey, M. J. Buehler and R. O. Ritchie, “On the mechanistic origins of toughness in bone”, Annu. Rev. Mater. Res., 40 (2010) 25–53. [35] M. J. Buehler, “Molecular nanomechanics of nascent bone : Fibrillar toughening by mineralization”, Nanotechnology, 18(29) (2007) 1-10. [36] H. S. Gupta and P. Zioupos, “Fracture of bone tissue: The ‘hows’ and the ‘whys’ ”, Med. Eng. Phys., 30(10) (2008) 1209-1226. [37] G. E. Fantner, T. Hassenkam, J. H. Kindt, J. C. Weaver, H. Birkedal, Leonid Pechenik, J. A. Cutroni, G. A. G. Cidade, G. D. Stucky, D. E. Morse and P. K. Hansma, “Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture”, Nat. Mater., 4(8) (2005) 612-616. [38] B. L. Smith, T. E. SchaÈffer, M. Viani, J. B. Thompson, A. Frederick, J. Kindt, A. Belcher, G. D. Stuckyk, D. E. Morse and P. K. Hansma, “Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites”, Nature, 24 (1999) 761-763. [39] G. E. Fantner, J. Adams, P. Turner, P. J. Thurner, L. W. Fisher and P. K. Hansma, “Nanoscale ion mediated networks in bone: Osteopontin can repeatedly dissipate large amounts of energy”, Nano Lett., 7(8) (2007) 2491-2498. [40] G. E. Fantner, E. Oroudjev, G. Schitter, L. S. Golde, P. Thurner, M. M. Finch, P. Turner, T. Gutsmann, D. E. Morse, H. Hansma and P. K. Hansma, “Sacrificial bonds and hidden Length: Unraveling molecular mesostructures in tough materials”, Biophys. J., 90(4) (2006) 1411-1418. [41] P. K. Hansma, G. E. Fantner, J. H. Kindt, P. J. Thurner, G. Schitter, P. J. Turner, S. F. Udwin and M. M. Finch, “Sacrificial bonds in the interfibrillar matrix of bone”, J. M. N. I., 5(4) (2005) 313-315. [42] B. Ji and H. Gao, “Mechanical principles of biological nanocomposites”, Annu. Rev. Mater. Res., 40 (2010) 77-100. [43] H. S. Gupta, W. Wagermaier, G. A. Zickler, D. R. B. Aroush, S. S. Funari, P. Roschger, H. D. Wagner and P. Fratzl, “Nanoscale deformation mechanisms in bone”, Nano Lett., 5(10) (2005) 2108-2111. [44] X. Wanga and C. Qian, “Prediction of microdamage formation using a mineral-collagen composite model of bone”, J. Biomech., 39(4) (2006) 595-602. [45] D. Vashishth, K. E. Tanner and W. Bonfield, “Contribution, development and morphology of microcracking in cortical bone during crack propagation”, J. Biomech., 33(9) (2000) 1169-1174. [46] R. K. Nalla, J. J. Kruzic, and R. O. Ritchie, “On the origin of the toughness of mineralized tissue: Microcracking or crack bridging ? ” , Bone, 34(5) (2004) 790-798. [47] R. O. Ritchie, J. H. Kinney, R. K. Nalla and J. J. Kruzic, “A fracture mechanics and mechanistic approach to the failure of cortical bone”, Fatigue Fract. Eng. Mater. Struct., 28(4) (2005) 345-371. [48] E. A. Zimmermann, M. E. Launey and R. O. Ritchie, “The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone”, Biomaterials, 31(20) (2010) 5297-5305. [49] D. Taylor, “How does bone break ? ”, Nat. Mater., 2(3) (2003) 133-134. [50] R. K. Nalla, J. H. Kinney and R. O. Ritchie, “Mechanistic fracture criteria for the failure of human cortical bone”, Nat. Mater., 2(3) (2003) 164-168. [51] K. J. Koester, J. W. Ager III and R. O. Ritchie, “The true toughness of human cortical bone measured with realistically short cracks”, Nat. Mater., 7(8) (2008) 672-677. [52] P. Fratzl, “Bone fracture: When the cracks begin to show”, Nat. Mater., 7(8) (2008) 610-612. [53] Q. D. Yang, B. N. Cox, R. K. Nalla and R. O. Ritchie, “Fracture length scales in human cortical bone:The necessity of nonlinear fracture models”, Biomaterials, 27(9) (2006) 2095-2113. [54] R. K. Nalla, J. J. Kruzic, J. H. Kinney and R.O. Ritchie, “Mechanistic aspects of fracture and R-curve behavior in human cortical bone”, Biomaterials, 26(2) (2005) 217-231. [55] K. S. Chan, C. K. Chan and D. P. Nicolella, “Relating crack-tip deformation to mineralization and fracture resistance in human femur cortical bone”, Bone, 45(3) (2009) 427-434. [56] V. Ebacher and R. Wang, “A unique microcracking process associated with the inelastic deformation of haversian bone” Adv. Funct. Mater., 19(1) (2009) 57-66. [57] B. Busse, M. Hahn, M. Soltau, J. Zustin, K. Püschel, G. N. Duda and M. Amling, “Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: Mineralization, morphology and biomechanics of human single trabeculae”, Bone, 45(6) (2009) 1034-1043. [58] J. F. ManoT, “Viscoelastic properties of bone: Mechanical spectroscopy studies on a chicken model”, Mater. Sci. Eng. C, 25(2) (2005) 145-152. [59] A. Nazarian, B. Hermannsson, J. Muller, D. Zurakowski and B. D. Snyder, “Effects of tissue preservation on murine bone mechanical properties”, J. Biomech., 42(1) (2009) 82-86. [60] P. Braidotti, E. Bemporad, T. D''Alessio, S. A. Sciuto and L. Stagni, “Tensile experiments and SEM fractography on bovine subchondral bone”, J. Biomech., 33(9) (2000) 1153-1157. [61] P. Zioupos, U. Hansen and J. D. Currey, “Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure”, J. Biomech., 41(14) (2008) 2932-2939. [62] X. Sun, J. Jeon , J. Blendell and O. Akkus, “Visualization of a phantom post-yield deformation process in cortical bone”, J. Biomech., 43(10) (2010) 1989-1996. [63] H. S. Gupta, J. Seto, W. Wagermaier, P. Zaslansky, P. Boesecke and P. Fratzl, “Cooperative deformation of mineral and collagen in bone at the nanoscale”, P. N. A. S. , 103 (2006) 17741-17746. [64] H. Herz and J. Reine, “On the contact of rigid elastic solids and on hardness”, Verh Ver Beforderung Gewerbe Fleisses, 61(1881) 410. [65] I. N. Sneddon, “The relation between load and penetration in the axi symmetric boussinesq problem for a punch of arbitrarypeofile”, Int. J. Eng. Sci., (1965) 47-56. [66] M. F. Doerner and W. D. Nix, “A method foe interpreting the data from depth-sensing indentation instruments”, J. Mater. Res., 1 (1986) 601. [67] W. C. Oliver and G. M. Pharr, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation”, J. Mater. Res., 7(1992) 613-61. [68] D. M. Ebenstein and L. A. Pruitt, “Nanoindentation of biological materials”, Nano Today, 1(3) (2006) 26-33. [69] X. M. Wang, F. Z. Cui, J. Ge, Y. Zhang and C. Ma, “Variation of nanomechanical properties of bone by gene mutation in the zebrafish”, Biomaterials, 23(23) (2002) 4557-4563. [70] K. Tai, H. J. Qi and C. Ortiz, “Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone”, J. Mater. Sci.:Mater. Med., 16(10) (2005) 947-959. [71] K. Tai, M. Dao, S. Suresh, A. Palazoglu and C. Ortiz, “Nanoscale heterogeneity promotes energy dissipation in bone”, Nat. Mater., 6(6) (2007) 454-462. [72] K. Tai, F. J. Ulm and C. Ortiz, “Nanogranular Origins of the Strength of Bone”, Nano Lett., 6(11) (2006) 2520-2525. [73] S. S. Samandari and K. A. Gross, “Micromechanical properties of single crystal hydroxyapatite by nanoindentation”, Acta Biomater., 5(6) (2009) 2206-2212. [74] L. P. Mullins, M. S. Bruzzi and P. E. McHugh, “Measurement of the microstructural fracture toughness of cortical bone using indentation fracture”, J. Biomech., 40 (2007) 3285-3288. [75] 陳家全、李家維、楊瑞森「生物電子顯微鏡書」,行政院國家科學委員會精密儀器發展中心編印,第 23-60 頁。 [76] Bone mineral density (BMD) calibration in Skyscan CT-analyser. [77] P. Salmon, “Method for ex-vivo micro-CT analysis of mouse bone (proximal tibia, distal femur) ”, Skyscan. [78] A. Xiang, M. Kanematsu, M. Mitamura, H. Kikkawa, S. Asano and M. Kinoshita, “Analysis of chang patterns of microcomputed tomography 3-Dimensional bone parameters as a high-Througput tool to evaluate antiosteoporotic effects of agents at an early stage of ovariectomy-induced osteoporosis in mice”, Invest. Radiol., 41(9) (2006) 704-712. [79] L. M. Wise, Z. Wang and M. D. Grynpas, “The use of fractography to supplement analysis of bone mechanical properties in different strains of mice”, Bone, 41 (2007) 620-630. [80] Y. T. Chang, C. M. Chen, M. Y. Tu, H. L., S. Y. Chang, T. C. Tsai , Y. T. Wang and H. L. Hsiao, “Effects of osteoporosis and nutrition supplements on structures and nanomechanical properties of bone tissue”, J. Mech. Behav. Biomed. Mater., In Press. [81] S. I. Hong, S. K. Hong and D. H. Kohn, “Nanostructural analysis of trabecular bone”, J. Mater. Sci.:Mater. Med., 20(7) (2009) 1419-1426. [82] E. I. Suvorova, P. P. Petrenko, P. A. Buffat, “Scanning and transmission electron microscopy for evaluation of order/disorder in bone structure”, Scanning, 29(2007) 162-170. [83] Y. Jiao, H. Chiu, Z. Fan, F. Jiao, E. C. Eckstein, W. G. Beamer and W. Gu, “Quantitative trait loci that determine mouse tibial nanoindentation properties in an F2 Population derived from C57BL/6J X C3H/HeJ”, Calcif. Tissue Int., 80(6) (2007) 383-390. [84] K. J. Koester, J. W. Ager III and R. O. Ritchie, “The effect of aging on crack-growth resistance and toughening mechanisms in human dentin”, Biomaterials, 29(10) (2008) 1318-1328. [85] R. K. Nalla, J. H. Kinney and R. O. Ritchie, “Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms”, Biomaterials, 24(22) (2003) 3955-3968. [86] R. K. Nalla, J.J. Kruzic, J.H. Kinney and R.O. Ritchie, “Aspects of in vitro fatigue in human cortical bone: Time and cycle dependent crack growth”, Biomaterials, 26(14) (2005) 2183-2195. [87] J. Wang and L. L. Shaw, “Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness”, Biomaterials, 30(34) (2009) 6565-6572. [88] F. Hang and A. H. Barber, “Nano-mechamical properties of individual mineralized collagen fibrils from bone tissue”, J. R. Soc. Interface, 8(57) (2011) 1-6.
摘要: 
骨骼為天然層狀結構,釐清其內部各微細結構與變形行為之間的關連性,對於骨骼病理學之研究以及生醫材料之開發皆有相當大的助益。因此本研究採用假手術鼠與切除卵巢鼠,透過高解析 X 光微型電腦斷層掃瞄及掃描式電子顯微鏡,分析鼠脛骨樣貌、骨礦物質密度及微結構;並以場發射穿透式電子顯微鏡觀察緻密骨氫氧基磷灰石晶體結構,比較老化對骨骼晶體結構上的差異。同時以奈米壓痕儀對鼠骨之機械性質與變形行為進行探討,探討緻密骨韌化機制與裂隙擴展行為,嘗試釐清在原子尺度下骨骼結構與變形行為之間的相關性;最後以同步觀測釐清在壓痕測試下裂隙擴展與骨骼結構彼此交互作用之情形。
研究結果發現,假手術鼠之脛骨緻密骨結構緻密,由許多氫氧基磷灰石晶體附著在膠原纖維上成束排列構成,且纖維排列方向大致相同,骨礦物密度較高,具有較佳之機械強度及韌性,其韌化機制包含裂隙偏折、裂隙架橋與微裂隙,在原子尺度下則觀察到沿晶斷裂、晶格扭曲與差排產生。而切除卵巢鼠因受體內雌激素下降之影響,導致骨質流失,因此結構較為鬆散且有大量有機物質填充於空隙處,膠原纖維與氫氧基磷灰石晶體之排列凌亂,造成機械強度較差,裂隙為直線狀擴展,僅有部分膠原纖維組成之架橋來抵抗裂隙前進,裂隙尖端銳利,並於原子尺度下觀察到沿晶斷裂、晶體滑移和旋轉、晶格扭曲與差排產生。

To clarify the relation between the microstructures and deformation behaviors of hierarchical bone structures will benefit the research of skeletal pathology and the development of biomedical materials. Thus in this study, the morphologies, mineral densities and microstructures as well as the arrangement of hydroxyapatite and collagen fibers of sham-operated and ovariectomized mouse cortical bone were examined by micro-computed tomography and electron microscopy. The mechanical properties and deformation behaviors of the mouse bone were analyzed by nanoindentation to clarify the toughening mechanisms and crack propagation behaviors as well as to realize the nanoscaled deformation of bone. By in-situ nanoindentation / TEM observations, the interactions between bone structures and crack propagations were verified.
The sham-operated mouse bone was dense, composed of aligned collagen fibers and hydroxyapatite crystals, and had a high bone mineral density and good mechanical properties. The toughening mechanisms included crack deflection, ligament bridging and microcracking. At the atomic scale, intergranular fracture, lattice distortion and dislocation formation were observed. On the contrary, due to ostreoporosis caused by decreased estrogen, the ovariectomized mouse bone was loose with a random arrangement of hydroxyapatite crystals and collagen fibers, thus lowering the mechanical properties. Sharp cracks propagated straight with a few collagen fiber bridging. Intergranular fracture, grain sliding and rotation, lattice distortion and dislocation formation were observed.
URI: http://hdl.handle.net/11455/10173
其他識別: U0005-1706201118364900
Appears in Collections:材料科學與工程學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.