Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10175
DC FieldValueLanguage
dc.contributor顏富士zh_TW
dc.contributorFu-Su Yenen_US
dc.contributor向性一zh_TW
dc.contributorHsing-I Hsiangen_US
dc.contributor.advisor曾文甲zh_TW
dc.contributor.advisorWen-Jea Tsengen_US
dc.contributor.author郭軒甫zh_TW
dc.contributor.authorKuo, Hsiuan-Fuen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:44:26Z-
dc.date.available2014-06-06T06:44:26Z-
dc.identifierU0005-1707201115564900zh_TW
dc.identifier.citation[1] J.-F. Chen, H.-M. Ding, J.-X. Wang, L. Shao, “Preparation and characterization of porous hollow silica nanoparticles for drug delivery application,” Biomaterials, 25, 723-727 (2004). [2] L. Li, H. Song, X. Chen, “Hollow carbon microspheres prepared from polystyrene microbeads,” Carbon, 44, 587-610 (2006). [3] F. Caruso, “Nanoengineering of particle surfaces,” Adv. Mater., 13(1), 11-22 (2001). [4] J.P.H. Ansermet, E. Baberiswyl, “Dielectric study of hollow microsphere composites,” J. Mater. Sci., 29, 2841-2846 (1994). [5] C. Avelino, “From microporous to mesoporous molecular sieve materials and their use in catalysis,” Chem. Rev., 97, 2373-2419 (1997). [6] X. J. Liang, S. Wanga, J. A. Niua, X. Liua, S. X. Jiang, “Preparation and ion chromatographic properties of a new core-shell chromatographic support Al2O3/SiO2-10,” J. Chromatogr. A, 1216, 3054-3058 (2009). [7] V. M. Gunko, V. I. Zarko, V. V. Turov, “Characterization of fumed alumina/silica/titania in the gas phase and in aqueous suspension,” J. Colloid. Interf. Sci., 220, 302-323 (1999). [8] M. Shunsuke, F. Koji, N. Kazuki, H. Kazuyuki, “Morphology control of phase-separation-induced alumina-silica macroporous gels for rare-earth-doped scattering media,” J. Phys. Chem. B, 108, 16670-16676 (2004). [9] D. K. Ingall, C. H. Honeyman, J. V. Mercure, P. A. Bianconi, R. R. Kunz, “Surface functionalization and imaging using monolayers and surface-grafted polymer layers,” J. Am. Chem. Soc., 121, 3607-3613 (1999). [10] A. El Harrak, G. Carrot, J. Oberdisse, J. Jestin, F. Boue’, “Atom transfer radical polymerization from silica nanoparticles using the ‘grafting from’ method and structural study via small-angle neutron scattering,” Polymer, 46, 1095-1104 (2005). [11] A. Dkhissi, A. Estève, L. Jeloaica, D. Estève, M. D. Rouhani, “Grafting of chains organo-silane on silica surface: a quantum chemical investigation,” Chem. Phys. Lett., 400, 353-356 (2004). [12] K. G. Neoh, K. K. Tan, P. L. Goh, S. W. Huang, E. T. Kang, K. L. Tan, “Electroactive polymer–SiO2 nanocomposites for metal uptake,” Polymer, 40, 887-893 (1999). [13] D. L. Elbert, “Liquid–liquid two-phase systems for the production of porous hydrogels and and hydrogel microspheres for biomedical applications: A tutorial review,” Acta. Biomaterialia, 7, 31-56 (2011). [14] E. J. Barrett, H. R. Thomas, “Kinetics of dispersion polymerization of soluble monomers. I. Methyl Methacrylate,” J. Polymer. Sci. 1 Polymer. Chem., 7, 2621-2650 (1969). [15] 王彥文, “以植入前驅物於膠體模板方式合成單一分散中空氧化鋁暨其他無機物微球之研究,” 碩士論文, 國立中興大學材料科學與工程研究所 (2008). [16] 林威呈, “以分散聚合法製備高分子模板作為植入有機前驅物之研究 ,” 碩士論文, 國立中興大學材料科學與工程研究所 (2010). [17] T. Ribeiro, C. Baleizão, J. S. Farinha, “Synthesis and characterization of perylenediimide labeled core-shell hybrid silica-polymer nanoparticles,” J. Phys. Chem. C, 113, 18082-18090 (2009). [18] J. M. Yeh, C. J. Weng, W. J. Liao, Y. W. Mau, “Anticorrosively enhanced PMMA–SiO2 hybrid coatings prepared from the sol-gel approach with MSMA as the coupling agent,” Surf. Coating. Tech., 201, 1788-1795 (2006). [19] I. Freris, D. Cristofori, P. Riello, A. Benedetti, “Encapsulation of submicrometer-sized silica particles by a thin shell of poly(methyl methacrylate),” J. Colloid. Interf. Sci., 331, 351-355 (2009). [20] L. Martín, J. Oriol Ossó, S. Ricart, A. Roig, O. Garcíad, R. Sastred, “Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties,” J. Mater. Chem., 18, 207-213 (2008). [21] 陳俊光, “以溶凝膠法合成PMMA/氧化矽複合材料的光譜、熱性質、與型態分析,” 碩士論文, 國立中山大學材料科學研究所 (2003). [22] 蔡松伯, “溶膠凝膠法製備環氧樹指/二氧化矽有機無機混成體,” 碩士論文, 國立中央大學化學工程研究所 (2002). [23] C. J. Brinker, G.W. Scherer, “Sol-gel science:The physics and chemistry of sol-gel processing,” Academic Press, Inc., New York (1990). [24] M. D. Sacks, R. S. Sheu, “Rheological characterization during the sol-gel transtion in science of ceramic chemical processing,” Wiley, New York (1986). [25] W. Stöber, A. Fink, E. Bohn, “Control growth of monodisperse silica spheres in the micro size range,” J. Colloid. Interf. Sci., 26, 62-69 (1968). [26] W. Zhou, J. H. Dong, K.Y. Qiu, Y. Wei, “Preparation and properties of poly(styrene-co-maleic anhydride)/silica hybrid materials by the in situ sol-gel process,” J. Polym. Sci. Polym. Chem., 36, 1607-1613 (1998). [27] F. Li, S. Zhou, L. Wu, “Preparation and characterization of UV-curable MPS modified silica nanocomposite Coats,” J. Appl. Polym. Sci., 98, 2274-2281 (2005). [28] M. Abboud, M. Turner, E. Duguet, M. Fontanilleb, “PMMA-based composite materials with reactive ceramic fillers Part 1.—Chemical modification and characterisation of ceramic particles,” J. Mater. Chem., 7, 1527-1532 (1997). [29] F. Bauer, H. Ernst, U. Decker, M. Findeisen, H. J. Glasel, H. Langguth, E. Hartmann, R. Mehnert, C. Peuker, “Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles, 1 FTIR and multi-nuclear NMR spectroscopy to the characterization of methacryl grafting,” Macromol. Chem. Phys., 201, 2654-2659 (2000). [30] C. J. Brinker, K. D. Keefer, D. W. Schaefer, C. S. Ashley, “Sol-gel transtion in simple silicates,” J. Non-Cryst. Solids, 48, 47-64 (1982). [31] C. J. Brinker, K. D. Keefer, D. W. Schaefer, C. S. Ashley, “Sol-gel transtion in simple silicates II,” J. Non-Cryst. Solids, 63, 45-59 (1984). [32] 詹佳樺, “溶膠-凝膠法製備聚甲基丙烯酸甲酯/二氧化矽混成體之研究,” 碩士論文, 國立中央大學化學工程研究所 (2001). [33] R. Aelion, A. Loebel, F. Eirich, “Hydrolysis of ethyl silicate,” J. Am. Chem. Soc., 72, 5750-5751 (1950). [34] 張展豪, “片狀氧化鋁奈米混成有機複合塗層之阻氣阻水性質研究,” 碩士論文, 國立中興大學材料科學與工程研究所 (2008). [35] S. Shen, E. D. Sudol, M. S. El-Aasser, ”Control of particle size in dispersion polymerization of methyl methacrylate” J. Polym. Sci. Part A: Polym. Chem., 31, 1393-1402 (1993). [36] C. H. Bamford, A. Ledwith, P. K. Sen Gupta, “Particulate precipitation polymerization: A convenient procedure for the synthesis of crosslinked polymers useful as polymeric supports” J. Appl. Polym. Sci., 25, 2559-2566 (1980). [37] K. E. J. Barrett, “Dispersion polymerization in organic media,” 1st edition, Wiley-Interscience, New York (1975). [38] G. Odian, “Principles of polymerization,” 3rd edition, John Wiley & Sons Inc., New York (1991). [39] B. J. Gao, R. X. Wang, Y. Zhang, “Immobilization of manganoporphyrin on a novel polymeric support and catalytic oxidation characteristic of supported catalyst,” J. Appl. Polym. Sci., 112, 2764-2772 (2009). [40] S. Chalaye, B. L. Elodie, J. L. Putaux, J. Lang, “Synthesis of composite latex particles filled with silica,” Macromol. Symp., 169, 89-96 (2001). [41] H. Widiyandari, F. Iskandar, N. Hagura, K. Okuyama, “Preparation and characterization of nanopigment-poly(styrene-co-n-butyl acrylate-co-methacrylic acid) composite particles by high speed homogenization-assisted suspension polymerization,” J. Appl. Polm. Sci., 108, 1288-1297 (2008). [42] S. S. Lee, K. Y. Park, J. Y. Kim, K. D. Suh, “Effect of GMA on monodisperse epoxy-functionalized polymer microsphere particles by dispersion copolymerization of styrene with glycidyl methacrylate,” J. Appl. Polm. Sci., 80, 1206-1212 (2001). [43] C. H. Ho, S. A. Chen, M. D. Amiridis, J. W. Van Zee, “Dispersion polymerization of styrene in alcohol media: Effect of initiator concentration, solvent polarity, and temperature on the rate of polymerization,” J. Polym. Sci., Part A: Polym. Chem. Ed., 35, 2907-2915 (1997). [44] T. Bahar A. Tuncel, “Monodisperse poly(p-chloromethylstyrene) microbeads by dispersion polymerization,” Polym. Eng. Sci., 39, 1849-1855 (1999). [45] Y. Almog, S. Reich, M. Levy, “Monodisperse polymeric spheres in the micron size range by a single step process,” Brit. Polym. J., 14, 131-136 (1982). [46] K. P. Lok, C. K. Ober, “Particle size control in dispersion polymerization of polystyrene,” Canad. J. Chem., 63, 209-216 (1985). [47] C. K. Ober, K. P. Lok, “Formation of large monodisperse copolymer particles by dispersion polymerization,” Macromolecules, 20, 268-273 (1987). [48] C. K. Ober, M. L. Hair, “The effect of temperature and initiator levels on the dispersion polymerization of polystyrene,” J. Polym. Sci., Part A: Polym Chem. Ed., 25, 1395-1407, (1987). [49] D. Horak, F. Svec, J. M. J. Frechet, “Preparation of monodisperse micrometer size beads by dispersion copolymerization of styrene and butyl methacrylate in polar media,” J. Polym. Sci. Part A: Polym. Chem., 33 2329-2338, (1995). [50] X. W. Lou, L. A. Archer, Z. Yang, “Hollow micro-/nanostructures: Synthesis and applications,” Adv. Mater., 20 3987-4019, (2008). [51] W. Y. Yang, F. G. Gao, H. T.Wang, X. M. Cheng, Z. P. Xie, F. Xing, L. Anw, “Hollow alumina microsphere chain networks,” J. Am. Ceram. Soc., 92, 280-282, (2009). [52] H. Kou, J. Wang, Y. Pan, J. Guo, “Hollow Al2O3 microspheres derived from Al/AlOOH . nH2O core-shell particles,” J. Am. Ceram. Soc., 88, 1615-1618, (2005). [53] T. Kate, H. Ushijima, M. Katsumata, T. Hyodo, Y. Shirnizu, M. Egashira, “Effect of core materials on the formation of hollow Alumina microspheres by mechanofusion process,” J. Am. Ceram. Soc., 87, 60-67, (2004). [54] X. Wu, D. Wang, Z. Hu, G. Gu, “Synthesis of γ-AlOOH (γ-Al2O3) self-encapsulated and hollow architectures,” Mater. Chem. Phys., 109, 560-564, (2008). [55] R. H. A. Ras, M. Kemell, J. d. Wit, M. Ritala, G. Brinke, M. Leskelä, O. Ikkala, “Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self-assembled polymeric templates,” Adv. Mater., 19, 102-106, (2007). [56] Y. Xia, R. Mokaya, “Hollow spheres of crystalline porous metal oxides: A generalized synthesis route via nanocasting with mesoporous carbon hollow shells,” J. Mater. Chem., 15, 3126-3131, (2005). [57] P. Xu, H. Wang, R. Tong, Q. Du, W. Zhong, “Preparation and morphology of SiO2/PMMA nanohybrids by microemulsion polymerization,” Colloid. Polym. Sci., 284, 755-762 (2006). [58] J. M. Kim, S. M. Chang, “Control of hydroxyl group content in silica particle synthesized by the sol-precipitation process,” Ceram. Int., 35, 1015-1019 (2009). [59] G. N. Van, B. Christine, M. Andre, “Synthesis of hybrid TiO2 nanoparticles with well-defined poly(methyl methacrylate) and poly(tert-butyldimethylsilyl methacrylate) via the RAFT process,” Polymer, 50, 3095-3102 (2009). [60] Z. Sassi, J. C. Bureau, A. Bakkali, “Spectroscopic study of TMOS-TMSM-MMA gels previously identification of the networks inside the hybrid material,” Vib. Spec., 28, 299-318 (2002). [61] S. Tasic, B. Bozic, B. Dunjic, “Synthesis of new hyperbranched urethane-acrylates and their evaluation in UV-curable coatings,” Prog.Org. Coat., 51, 320-327 (2004). [62] J. Lin, X. R. Zeng, Y. J. Hou, “FT-IR and 29Si-NMR studies on UV-curable DDS-MPTMS/SiO2 hybrid coating,” Polym-Plast technol., 47, 1297-1301 (2008). [63] 有機化合物之光譜鑑別法第四版. 作者, R. M. Silverstein原著/賀孝雍譯. [64] T.H. Ko, H. Chu, “Characterization of southern Taiwan red soils as a regenerable sorbent for sorption of hydrogen sulfide from coal gas with spectroscopic techniques,” Spectrochim. Acta A, 62, 407-414 (2005). [65] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, “Handbook of X-ray photoelectron spectroscopy,” Perkin-Elmer Corporation, (1992). [66] S. Brunauer, L. S. Deming, W. E. Deming, E. Tellers, “On a theory of the van der waals adsorption of gases,” J. Am. Chem. Soc., 62, 1723-1732 (1940). [67] G. Ertl, H. Knozinger, J. Weitkamp, “Handbook of heterogeneous catalysis,” vol 3, VCHD-69451 Weinheim, p. 1508 (1997).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10175-
dc.description.abstract本研究合成之次微米二氧化矽非晶之粒徑以動態光散射介面電位與粒徑分析儀(DLS)鑑定後,其平均粒徑為0.3±0.15 μm,吾人以此二氧化矽為核,先以三甲氧矽烷丙基甲基丙烯酸(MPS)修飾二氧化矽表面,再與高分子單體甲基丙烯酸丁酯(BMA)聚合,製得有機/無機複合粒子(簡稱SMB)。由傅立葉轉換紅外線光譜儀(FT-IR)、固態核磁共振質譜儀(SSNMR)以及熱重與熱差分析儀(TG/DTA)分析得知,二氧化矽表面之MPS修飾量最多為22%,而BMA與MPS的接枝率最高為67%。進一步將SMB作為模板,無水氯化鋁作為鋁前驅物,在SSNMR與化學分析電子儀(ESCA)的分析結果發現,模板SMB與無水氯化鋁改質後,於固態27Al-NMR圖譜發現兩個峰值,分別位於-0.7與12.7 ppm,顯示粒子中含有鋁的成分且鋁是以六配位與五配位的離子形式存在;由ESCA全能譜圖分析,得知有機/無機複合模板上有Al元素之訊號,於Al2p之窄能譜圖得知Al元素鍵結屬於Al2O3鍵。綜合以上兩組分析,顯示吾人自製之有機/無機複合粒子經無水氯化鋁改質後存在鋁離子之鍵結。將此鋁改質模板於空氣氣氛以1000 oC煅燒兩小時,以場發射掃描式電子顯微鏡(SEM)與能量散射光譜儀(EDS)分析,顯示獲得二氧化矽/氧化鋁核殼結構複合粒子,若進一步以氫氟酸移除二氧化矽核,由穿透式電子顯微鏡(TEM)、擇區繞射(SAD) 與X光繞射分析儀(XRD)觀察,吾人獲得γ-氧化鋁中空結構。藉由比表面積及孔徑分析儀(BET)分析,氧化鋁中空結構之BET比表面積為78.6 m2/g,以Horvath-Kawazoe孔徑分佈模型,氧化鋁多孔結構同時具有微孔(1.35 nm)與介孔(2.23 nm)洞。zh_TW
dc.description.abstractSubmicrometer silica (SiO2) particles with an average diameter of 0.3±0.15 μm determined from the dynamic light-scattering technique (DLS) were grafted by 3-trimethoxysilyl propyl methacrylate (MPS) to form silica/MPS, hereafter termed SM, followed then by polymerization of butyl methacrylate (BMA) to form silica/MPS/BMA, hereafter termed SMB, hybrid particles. The highest MPS and BMA grafting degrees are 22% and 67%, respectively, determined by Fourier-transform infrared spectrometry (FTIR), solid-state nuclear magnetic resonance spectrometry (SSNMR), and thermogravimetric/differential thermal analysis (TG/DTA). When the SMB hybrid particles were used as a template, anhydrous aluminum chloride as a precursor for alumina (Al2O3), and tetrachloroethylene as a reactive solvent, the SMB particles showed existence of 5- and 6-coordinated aluminum peaks by SSNMR. The aluminum signals were also confirmed by the electron spectroscopy for chemical analysis (ESCA). Field-emission scanning electron microscopy (FE-SEM) and Energy Dispersive Spectrometry (EDS) showed that SiO2@Al2O3 structure is obtained after calcination at 1000 oC in air atmosphere from the silica/MPS/BMA/Al hybrid particles. Removal of the SiO2 core via acid etching showed hollow Al2O3 structure from transmission electron microscopy (TEM), selective area diffraction (SAD), and X-ray diffraction (XRD). The hollow Al2O3 structure showed a B.E.T. specific surface area of 78.6 m2/g and a mixture of micro- and meso-pores by the Horvath-Kawazoe model.en_US
dc.description.tableofcontents第一章 緒論…………………………………………………1 1-1 前言…………………………………………………1 1-2 研究動機……………………………………………1 第二章 文獻回顧……………………………………………3 2-1 溶膠凝膠法概論……………………………………3 2-2 利用溶膠凝膠法製備有機無機混合物……………3 2-2-1 次微米二氧化矽……………………………………3 2-2-2 矽烷耦合劑…………………………………………3 2-2-3 矽烷耦合劑與二氧化矽表面之反應………………4 2-3 矽烷耦合劑在水解-縮合反應中主要影響因素……5 2-3-1 pH值的影響…………………………………………5 2-3-2 水含量的影響………………………………………6 2-3-3 溶劑比例的影響……………………………………6 2-3-4 烷氧基(Alkoxy Group)的影響……………………6 2-3-5 誘導效應(Inductive Effect)之影響……………7 2-4 分散聚合法的歷史發展……………………………7 2-5 分散聚合法之反應與成核機制……………………8 2-6 影響分散聚合因素之探討…………………………9 2-6-1 起始劑的影響………………………………………9 2-6-2 穩定劑的影響………………………………………9 2-6-3 溫度的影響…………………………………………9 2-6-4 溶劑的影響…………………………………………10 2-7 以有機模板合成無機氧化物………………………10 2-8 以不同種類之硬模板合成氧化鋁中空球…………11 2-8-1 以PS球為合成氧化鋁中空球之模板………………11 2-8-2 以碳球為合成氧化鋁中空球之模板………………12 2-8-3 以商用聚苯乙烯微球為合成無機氧化物之模板…13 第三章 實驗流程與分析儀器介紹…………………………22 3-1 實驗藥品……………………………………………22 3-2 製程設備……………………………………………23 3-3 以自製有機無機複合模板合成氧化鋁空心結構之一貫實驗流程………………………………………………………………24 3-4 Stöber法合成silica之實驗流程…………………25 3-5 以2.26 M甲基磺酸改質二氧化矽之實驗流程……26 3-6 合成二氧化矽與MPS之混合物(SM)實驗流程………27 3-7 合成二氧化矽、MPS與BMA之混合物(SMB)實驗流程…29 3-8 以SMB合成二氧化矽/氧化鋁核殼結構與氧化鋁中空結構30 3-9 分析儀器……………………………………………31 第四章 結果與討論…………………………………………33 4-1 次微米二氧化矽球之晶相與顯微結構分析………33 4-1-1 次微米二氧化矽球之晶相分析(XRD)………………33 4-1-2 次微米二氧化矽球之顯微結構分析(SEM)…………34 4-1-3 次微米二氧化矽球之粒徑分析(DLS)………………34 4-2 經MPS表面修飾之二氧化矽(SM)之物理化學性質分析…35 4-2-1 改變pH值對MPS接枝量的影響………………………35 4-2-2 改變反應溫度對MPS接枝量的影響…………………38 4-2-3 改變MPS添加濃度對MPS接枝量的影響………………40 4-2-4 MPS在二氧化矽表面修飾的SSNMR分析………………45 4-3 SM與BMA的聚合之物理化學性質分析………………46 4-3-1 二氧化矽表面的FTIR官能基分析……………………46 4-3-2 二氧化矽表面的SSNMR官能基分析…………………48 4-3-3 SMB之表面顯微結構分析……………………………49 4-4 二氧化矽/氧化鋁核殼結構與氧化鋁中空結構……51 4-4-1 無水氯化鋁改質後有機/無機複合粒子SMB之SSNMR鋁離子結構分析…………………………………………………………51 4-4-2 無水氯化鋁改質後有機/無機複合粒子SMB之ESCA分析…51 4-4-3 二氧化矽/氧化鋁核殼結構…………………………53 4-4-4 氧化鋁中空結構………………………………………55 4-4-5 氧化鋁中空微球之比表面積分析(BET)……………57 4-5 試作氧化鐵中空結構可行性分析……………………59 第五章 結論……………………………………………………62 參考文獻 …………………………………………………………63zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1707201115564900en_US
dc.subjectsilicon oxideen_US
dc.subject二氧化矽zh_TW
dc.subject3-trimethoxysilyl propyl methacrylate (MPS)en_US
dc.subjectbutyl methacrylate (BMA)en_US
dc.subjectcore/shellen_US
dc.subjectorganic/inorganic compounden_US
dc.subject三甲氧矽烷丙基甲基丙烯酸(MPS)zh_TW
dc.subject甲基丙烯酸丁酯(BMA)zh_TW
dc.subject核殼結構zh_TW
dc.subject有機/無機複合zh_TW
dc.title藉由有機修飾二氧化矽表面合成無機複合與多孔氧化物陶瓷之研究zh_TW
dc.titleEffect of Organics Modified Silicon Oxide on Synthesis of Inorganic Hybrids and Porous Oxide Ceramicsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:材料科學與工程學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.