Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10179
DC FieldValueLanguage
dc.contributor汪俊延zh_TW
dc.contributor孫文彬zh_TW
dc.contributor.advisor吳威德zh_TW
dc.contributor.author王康羽zh_TW
dc.contributor.authorWang, Kang-Yuen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:44:26Z-
dc.date.available2014-06-06T06:44:26Z-
dc.identifierU0005-1708201116140700zh_TW
dc.identifier.citation1. 陳新上,工業的幕後支柱─台灣耐火材料發展史,臺灣區耐火材料工會,第2-337頁,民國96年。 2. J. Y. Uan, H. M. Lin, J. K. Lin, M. C. Lin, C. M. Lin, W. J. Tseng, and W. Wu, “A Study on the New Approach for Refining Molten Steel Using a Used Reductive Slag,” SEAISI Quarterly, Vol. 39, No. 4, pp. 13-16, 2010. 3. ASTM Standards, “C71-08 Standard Terminology Relating to Refractories,” ASTM International, Vol. 15.01, 2008. 4. ASTM Standards, “C24-09 Standard Test Method for Pyrometric Cone Equivalent (PCE) of Fireclay and High Alumina Refractory Materials,” ASTM International, Vol. 15.01, 2009. 5. 張剛,“鎂碳磚的損毀機理及其防損對策”,鞍鋼技術,第9期,第10~13頁,2000年。 6. S. Jansson, V. Brabie, and P. Jönsson, “Corrosion Mechanism and Kinetic Behaviour of MgO–C Refractory Material in contact with CaO–Al2O3–SiO2–MgO Slag,” Scandinavian Journal of Metallurgy, Vol. 34, No. 5, pp. 283-292, 2005. 7. L. Rongti, P. Wei, M. Sano, and J. Li, “Kinetics of Reduction of Magnesia with Carbon,” Thermochemica Acta, Vol. 390, No. 1-2, pp. 145-151, 2002. 8. S. Zhang, N. J. Marriot, and W. E. Lee, “Thermochemistry and Microstructure of MgO-C Refractories Containg Various Antioxidants,” Journal of European Ceramic Society, Vol. 21, No. 8, pp. 1037-1047, 2001. 9. S. Uchida, K. Ichikawa, and K. Niihara, “High-Temperature Properties of Unburned MgO–C Bricks Containing Al and Si Powders,” Journal of American Ceramic Society, Vol. 81, No. 11, pp. 2910-2916, 1998. 10. M. Faghihi-Sani, and A. Yamaguchi, “Oxidation Kinetics of MgO–C Refractory Bricks,” Ceramics International, Vol. 28, No. 8, pp. 835-839, 2002. 11. R. A. Mattila, J. P. Vatanen and J. J. Härkki, “Chemical Wearing Mechanism of Refractory Materials in a Steel Ladle Slag Line,” Scandinavian Journal of Metallurgy, Vol. 31, No. 4, pp. 241-245, 2002. 12. M. V. Ende, M. Guo, P. T. Jones, B. Blanpain, and P. Wollants, “Degradation of MgO–C Refractories by MnO-rich Stainless Steel Slags,” Ceramics International, Vol. 35 , No. 6, pp. 2203-2212, 2009. 13. A. S. Gokce, C. Gurcan, S. Ozgen, and S. Aydin, “The effect of antioxidants on the oxidation behaviour of magnesia–carbon refractory bricks,” Ceramics International, Vol. 34, No. 2, pp. 323-330, 2008. 14. S. Jansson, V. Brabie, and P. Jönsson, “Corrosion Mechanism of Commercial Doloma Refractories in Contact with CaO–Al2O3 –SiO2 – MgO Slag,” Ironmaking and Steelmaking, Vol. 35, No. 2, pp. 99-107, 2008. 15. K. Mukai, Z. Tao, K. Goto, Z. Li, and T. Takashima, “In-Situ Observation of Slag Penetration into MgO Refractory,” Scandinavian Journal of Metallurgy, Vol. 31, No. 1, pp. 68-78, 2002. 16. S. M. Siadati, A. Monshi, E. Karamian, S. Alikhani, and A. Salehian, “Hot Corrosion of Slag Line in Plaster of Tundish in Continuous Casting of Steel,” International Journal of ISSI, Vol. 5, No. 2, pp. 36-44, 2008 17. S. Zhang, and W. E. Lee, “Influence of Additives on Corrosion Resistance and Corroded Microstructures of MgO–C Refractories,” Journal of European Ceramic Society, Vol. 21, No. 13, pp. 2393-2405, 2001. 18. A. N. Conejo, R. G. Lule, F. Lop´ez, and R. Rodriguez, “Recycling MgO-C Refractory in Electric Arc Furnaces,” Resources, Conservation, and Recycling, Vol. 49, No. 1, pp. 14-31, 2006. 19. J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants, “In Situ Observation of the Direct and Indirect Dissolution of MgO Particles in CaO–Al2O3–SiO2-Based Slags,” Journal of European Ceramic Society, Vol. 27, No. 4, pp. 1961-1972, 2007. 20. 樊新麗、顧華志、蔡鄂漢、方義能、王長民、李冬梅,“不同碳含量的鎂碳磚抗渣侵蝕性能研究”,武漢科技大學學報,第32卷,第4期,第394~398頁,2009年。 21. S. Smets, S. Parada, J. Weytjens, G. Heylenand, P. T. Jones, M. Guo, B. Blanpain, and P. Wollant, “Behaviour of Magnesia-Carbon Refractories in Vacuum-oxygen Decarburisation Ladle Linings,” Ironmaking and Steelmaking, Vol. 30, No. 4, pp. 293-300, 2003. 22. S. Jansson, V. Brabie, and P. Jönsson, “Corrosion Mechanism of Commercial MgO–C Refractories in Contact with Different Gas Atmospheres,” ISIJ International, Vol. 48, No. 6, pp. 760-767, 2008. 23. C. Baudı´n, C. Alvarez, and R. Moore, “Influence of Chemical Reactions in Magnesia–Graphite Refractories:I, Effects on Texture and High-Temperature Mechanical Properties,” Journal of American Ceramic Society, Vol. 82, No. 12, pp. 3529-3538, 1999. 24. M. Guo, S. Parada, P. T. Jones, E. Boydens, J. V. Dyck, B. Blanpain, and P. Wollants, “Interaction of Al2O3-Rich Slag with MgO–C Refractories During VOD Refining—MgO and Spinel Layer Formation at the Slag/Refractory Interface,” Journal of European Ceramic Society, Vol. 29, No. 6, pp. 1053-1060, 2009. 25. 于景坤、劉承軍,“鎂碳耐火材料表面MgO 緻密層的形成機理”,耐火材料,第36卷,第3期,第125~127頁,2002年。 26. 于景坤、劉承軍,“影響鎂碳耐火材料表面MgO 緻密層形成的因素”,耐火材料, 第36卷,第4期,第190~193頁,2002年。 27. 謝文明、魏耀武、趙保華,“鋼包精煉渣對不同MgO基耐火材料的侵蝕研究”,耐火材料,第44卷,第3期,第184~187頁,2010年。 28. 方莉莉、王建軍、周俐、李強,“LF爐混合型精煉渣脫硫的實驗室研究”,安徽工業大學學報(自然科學版) ,第25卷,第1期,第14~16頁,2008年。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10179-
dc.description.abstract為了研究一次渣回收再利用之可行性,本研究以靜態渣蝕方法探討一次渣及脫硫劑對鎂碳耐火材料的高溫腐蝕。分別添加一次渣及CaO-SiO2-Al2O3三元脫硫劑於鎂碳耐火坩鍋中(MgO-15%C) 並加入鋼材 ,再以二矽化鉬(MoSi2)高溫爐加熱至1600℃並持溫30、45及120分鐘,以此做為反應時間。坩鍋冷卻後量測坩鍋渣線位置直徑,再與未反應前的坩鍋直徑比對,以此做為渣蝕指標。取坩鍋渣線位置製成試片,藉由掃描式電子顯微鏡觀察試片橫截面的表面結構,同時利用EDS進行成分分析。量測反應後耐火材料工作面至富石墨相的距離做為穿透指標。使用X-ray繞射分析反應前鎂碳耐火材料中的相組成。 經由EDS及X-ray繞射分析可得知反應前的鎂碳耐火材料中主要包含MgO、石墨、鋁矽等抗氧化添加物。反應前可看見富石墨相散佈於MgO顆粒之間。與一次渣反應30分鐘後可看到工作面上形成MgO緻密層,且無富石墨相。反應45分鐘後MgO緻密層與渣層之間出現厚度50μm的介層。此介層之Mg含量略低於MgO顆粒且含有少量渣中物質,由此推測介層成因為MgO溶入渣中。熔渣以CaMgSiO4相並沿石墨消失路徑進入鎂碳耐火材料。反應120分鐘後沒有介層,代表渣中MgO濃度已達飽和。與脫硫劑反應45分鐘後介層變厚且MgO緻密層較使用一次渣的試片疏鬆,大量熔渣穿透MgO緻密層而進入脫碳層。若熔渣在脫碳層形成連續液態薄膜,MgO緻密層便會脫離耐火材料。穿透指標則顯示一次渣及脫硫劑對鎂碳耐火材料的渣蝕現象具週期性。實驗結果指出在45分鐘的反應時間內,脫硫劑對對鎂碳耐火材料的渣蝕高於一次渣。因為一次渣的MgO含量較高,可減少耐火材的MgO溶解。zh_TW
dc.description.abstractTo look into the feasibility of reusing of recycled slag, this study was to discuss the high temperature corrosion on the MgO-15%C refractories with recycled slag and desulfurizer via a static corrosion test. Putting the recycled slag and the CaO-SiO2-Al2O tri-desulfurizer into MgO-15%C crucible respectively with steel billet, then heated them up to 1600℃ via MoSi2 furnace and hold for 30, 45 and 120 minutes. The holding time was took as reaction time. After cooling, the diameter of slag line of crucibles was measured, compared with that before heating, and set the difference as the basis of corrosion index. Samples were took from the region of slag line of crucibles, and examined the cross-section of samples and chemical composition by use of the SEM-EDS. The thickness from the interface between slag and refractories to the substrate was measured as penetration index. The phase identification of refractory substrate was done by XRD. The results showed that MgO-C based refractories contained MgO, graphite, and antioxidants of Si and Al. The graphite-rich phase was distributed among MgO grains before heating. After 30 minutes of reaction with recycled slag, there was dense MgO layer on the interface between slag and refractories , but no graphite-rich phase. After 45 minutes of reaction with recycled slag, the inter-layer appeared on the interface between slag and dense MgO layer with thinkness of 50μm. The Mg content of inter-layer was a bit lower than dense MgO layer, and there was few substance of slag in it, so the inter-layer was created from the dissolution of MgO. The melting slag penetrated MgO-C refractories with the phase of CaMgSiO4 via the path of vanishment of ghaphite. The was no inter-layer on the refractory reacted with recycled slag for 120 minutes, because the concentration of MgO was saturated in slag. After 45 minutes of reaction with desulfurizer, the inter-layer became thicker, and the dense MgO layer was looser than that with recycle slag, so a lot of melting slag penetrated dense MgO layer into decarburised layer. If the melting slag linked as contiguous liquid film in decarburised layer, the dense MgO layer would come off refractories. The penetration index indicated that the corrosion of MgO-C based refractories by recycle slag and desulfurizer was periodic. The result showed that the desulfurizer caused more corrosion on MgO-C based refractories than recycle slag in 45 minutes of reaction time. Recycle slag contained more MgO which could decrease the MgO dissolution from MgO-C based refractories.en_US
dc.description.tableofcontents誌謝 i 中文摘要 ii 英文摘要 iii 總目錄 v 圖目錄 vii 表目錄 ix 第一章 前言 1 第二章 文獻回顧 4 2-1耐火材料 4 2-1-1耐火材料的定義 4 2-1-2耐火材料的性質 4 2-2鋼鐵工業用耐火材料 6 2-3鎂碳耐火材料與破損機制 7 2-3-1碳的氧化 8 2-3-2 MgO的溶解 13 2-3-3 MgO與碳的氧化還原反應 15 2-4 渣蝕測試機構的設計 19 2-4-1動態渣蝕機構的設計 19 2-4-2靜態渣蝕機構的設計 21 第三章 實驗方法與步驟 23 3-1實驗流程 23 3-2材料與試片的準備 24 3-2-1耐火材及鋼材的準備 24 3-2-2一次渣前處理 24 3-2-3脫硫劑的準備 25 3-2-4 X光繞射分析試片的準備 25 3-3實驗配置 26 3-4渣蝕分析 28 3-5微觀組織分析 29 3-5-1 SEM顯微分析 29 3-5-2 EDS半定量分析 30 3-5-3穿透深度分析 31 第四章 結果與討論 32 4-1渣蝕分析 32 4-2微觀組織分析 34 4-2-1 X光繞射分析 34 4-2-2 SEM顯微分析 35 4-2-2.1 耐火磚基材顯微分析 35 4-2-2.2 一次渣反應30分鐘之坩鍋顯微分析 37 4-2-2.3 一次渣反應45分鐘之坩鍋顯微分析 39 4-2-2.4 一次渣反應120分鐘之坩鍋顯微分析 46 4-2-3脫硫劑對坩鍋之渣蝕顯微分析 53 4-2-4鎂碳耐火材料空燒顯微分析 61 4-3穿透深度分析 62 4-4高溫腐蝕機制示意圖 63 第五章 結論 65 第六章 參考文獻 66zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708201116140700en_US
dc.subjectSlag Corrosionen_US
dc.subject渣蝕zh_TW
dc.subjectMgO-C Refractoriesen_US
dc.subjectRecycled Slagen_US
dc.subjectStatic Corrosion Testen_US
dc.subject鎂碳耐火材zh_TW
dc.subject一次渣zh_TW
dc.subject靜態渣蝕實驗zh_TW
dc.title一次渣與脫硫劑對鎂碳耐火材料高溫腐蝕之研究zh_TW
dc.titleA Study on High-Temperature Corrosion of MgO-C Refractory Materials in Contact with Recycle Refining Slag and Desulfurizeren_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:材料科學與工程學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.