Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10186
標題: 真空熱壓法製備N型及P型矽鍺合金於熱處理後之熱電特性分析
The effect of heat treatment on the thermoelectric properties of n and p-type SiGe alloys prepared by vacuum hot-pressing
作者: 許文豪
許文豪, Wen-Hau Shiu
關鍵字: Si80Ge20;Si80Ge20;thermoelectric material;figure of merit;vacuum hot-pressing;vacuum arc melting;熱電材料;熱電優值;真空熱壓法;真空電弧熔煉
出版社: 材料科學與工程學系所
引用: 1. S. Jacobsson, and A. Johnson, “The diffusion of renewable energy technology: an analytical framework and key issues for research,” Energy Policy, 28 (2000) 625. 2. T. J. Seebeck, “Magnetic polarization of metals and minerals,” Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265 (1823). 3. A. F. Ioffe, S. V. Airapetyants, A. V. Ioffe, N. V. Kolomoets, and L. S. Stilbans, “On increasing the efficiency of semiconducting thermocouples,” Dokl. Akad. Nauk SSSR, 106 (1956) 931. 4. H. J. Goldsmid, and R. W. Douglas, “The use of semiconductors in thermoelectric refrigeration,” Br. J. Appl. Phys., 5 (1954) 386. 5. T. M. Tritt, and M. A. Subramanian, “Thermoelectric materials, phenomena and applications: A bird’s eye view,” MRS bulletin, 31 (2006). 6. C. E. Kelly, “The MHW converter (RTG),” 10th Int. Conf. on Energy Conversion Engineering, (1975) 880. 7. M. A. Karri, E. F. Thacher, B. T. Helenbrook, and M. S. Compeau, “Thermoelectrical energy recovery from the exhaust of a light truck,” 2003 Diesel Engine Emissions Reduction Conference. 8. F. Eric, “Thermoelectric generator,” New York State Energy Research and Development Authority, (2004). 9. W. Jan, J. W. Vandersande, and J. P. Fleurial, “Thermal management of power electronics using thermoelectric coolers,” 15th Int. Conf. on Thermoelectrics, Pasadena, (1996) 252. 10. S. E. Mohamed, H. S. Hamed, and C. Thierry, “Efficient segmented thermoelectric unicouples for space power applications,” Energy Conversion and Management, 44 (2003) 1755. 11. B. A. Cook, J. L. Harringa, S. H. Han, and C. B. Vining, “Si80Ge20 thermoelectric alloys prepared with GaP additions,” J. Appl. Phys., 78 (1995) 5474. 12. K. Kishimoto, Y. Nagamoto, and T. Koyanagi, “Thermoelectric properties of SiGe sintered with modified grain boundaries,” 17th International Conference on Thermoelectrics, (1998). 13. D. M. Rowe, “CRC Handbook of Thermoelectrics,” CRC Press Boca Raton London New York Washington, (1995). 14. G. S. Nolas, G. A. Slack, J. L. Cohn, and S. B. Schujman, “The next generation of thermoelectric materials,” Proceedings of the 17th International Conference on Thermoelectrics, (1998) 294. 15. 朱旭山,「熱電材料與元件之原理與應用」,電子與材料雜誌,第22期,2004年3月,78。 16. J. C. Peltier, “Nouvelles expériences sur la caloricité des courans electrique,” Ann. Chim. et Phys., 56 (1834) 371. 17. W. Thomson, “Account of researches in thermo-electricity,” Philos. Mag., 8 (1854) 62. 18. W. Thomson, “On the electrodynamic qualities of metals,” Philos. Trans. R. Soc. London, 146 (1856) 649. 19. H. J. Goldsmid, “Thermoelectric Refrigeration,” Plenum, New York, (1986). 20. J. P. Fleurial, A. Borshchevsky, T. Caillat, and R. Ewell, “New materials and devices for thermoelectric applications,” Energy Conversion Engineering Conference, (1997) 1080. 21. L. D. Hicks, and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Phys. Rev. B, 47 (1993) 16631. 22. N. Scoville, C. Bajgar, J. P. Fleurial, and J. Vanderasnde, “Thermal conductivity reduction in SiGe alloys by the addition of nanophase particles,” NanoStuctured Materials, 5 (1995) 207. 23. V. I. Fistul, “Heavily Doped Semiconductors,” Plenum, New York, (1969). 24. D. M. Rowe, and C. M. Bhandari, “Modern Thermoelectrics,” Holt Saunders, London, (1983). 25. C. M. Bhandari, and D. M. Rowe, “Thermal Conduction in Semiconductors,” Wiley Eastern Limited, New Delhi, (1988). 26. M. Jonson, and G. D. Mahan, “Mott''s formula for the thermopower and the Wiedemann-Franz law,” Phys. Rev. B, 21 (1980) 4223. 27. D. M. Rowe, “Recent advances in silicon-germanium alloys technology and an assessment of the problems of building the modules for a radioisotope thermoelectric generator,” J. Power sources, 19 (1987) 247. 28. J. Zhongwei, Z. Weilian, Y. liqin, and N. Xinhuan, “Anisotropy of the Seebeck coefficient in Czochralski grown p-type SiGe single crystal,” Materials Science and Engineering B, 119 (2005) 182. 29. O. Yamashita, and N. Sadatomi, “Thermoelectric properties of Si1-xGex (x≦0.10) with alloy and dopant segregations,” J. Appl. Phys., 88 (2000) 245. 30. B. A. Cook, B. J. Beaudry, J. L. Harringa, and W. J. Barnett, “The preparation of SiGe thermoelectric materials by mechanical alloying,” Energy Conversion Engineering Conference, (1989) 693. 31. L. H. Van Vlack,「材料科學與工程」,第六版,李志偉、劉森源、張庭瑞譯,文京圖書有限公司,台北,1996年2月,498。 32. T. Massalski, CD ROM: Binary Alloy Phase Diagrams, ASM International, OH, USA, 1996. 33. B. A. Cook, J. L. Harringa, S. H. Han, and B. J. Beaudry, “Parasitic effects of oxygen on the thermoelectric properties of Si80Ge20 doped with GaP and P,” J. Appl. Phys., 72 (1992) 1423. 34. J. L. Harringa, and B. A. Cook, “Comparison of different pressing techniques for the preparation of n-type silicon-germanium thermoelectric alloys,” Proceedings of the 15th International Conference on Thermoelectrics, (1996) 137. 35. J. L. Harringa, and B. A. Cook, “Application of hot isostatic pressing for consolidation of n-type silicon-germanium alloys prepared by mechanical alloying,” Materials Science and Engineering B, 60 (1999) 137. 36. D. M. Rowe, and G. Min, “High-temperature heat treatment of silicon germanium gallium phosphide alloys,” J. Phys. D: Appl. Phys., 23 (1990) 258. 37. L. W. Fu, D. M. Rowe, and G. Min, “The effect of heat treatment on the electrical power factor of high-temperature annealed n-SiGe/GaP thermoelectric alloys,” J. Phys. D: Appl. Phys., 26 (1993) 1796. 38. D. M. Rowe, G. Min, and Y. A. Chen, “The role of oxygen in increasing the carrier concentration of n-type silicon germanium-gallium phosphide alloys,” J. Phys. D: Appl. Phys., 27 (1994) 182. 39. G. A. Slack, and M. A. Hussain, “The maximum possible conversion efficiency of silicon-germanium thermoelectric generators.” J. Appl. Phys., 70 (1991) 2694. 40. Z. Jiang, W. Zhang, L. Yan, and X. Niu, “Anisotropy of the Seebeck coefficient in Czochralski grown p-type SiGe single crystal,” Materials Science and Engineering B, 119 (2005) 182. 41. I. Yonenaga, W. J. Li, T. Akashi, T. Ayuzawa, and T. Goto, “Temperature dependence of electron and hole mobilities in heavily impurity-doped SiGe single crystals,” J. Appl. Phys., 98 (2005) 063702. 42. M. Otake, K. Sato, O. Sugiyama, and S. Kaneko, “Pulse-current sintering and thermoelectric properties of gas-atomized silicon-germanium powders,” Solid State Ionics, 172 (2004) 523. 43. M. J. O’Neill, “Measurement of specific heat functions by differential scanning calorimetry,” Anal. Chem., 38 (1966) 1330. 44. P. M. Hemenger, “Measurement of high resistivity semiconductors using the van der Pauw method,” Rev. Sci. Instrum., 44 (1973) 698. 45. L. H. Van Vlack, “Elements of Materials Science and Engineering,” Sixth Edition, Addison-Wesley Pub. Co., (1985). 46. R. M. German, “Liquid Phase Sintering,” Plenum Press, New York, (1985).
摘要: 
In this study, both n- and p-type Si80Ge20 thermoelectric alloys were prepared by vacuum arc melting of corresponding ingots with gallium phosphide and boron, respectively. These n- and p-type Si80Ge20 alloys were ground into the fine powder by planetary ball milling, the dense bodies were sintered at 1373K for 3 hours by vacuum hot-pressing and then heat treated at 1523K for various times in air atmosphere. The effects of heat treatments with various times on the thermoelectric properties of SiGe alloys were studies.
From XRD analysis, the as-hot-pressed samples contain the sole SiGe phase structure. The heat treatment process causes grain growth and promote sintered density in air, also produced SiO2 phase as well. It is shown by FE-SEM that the amount of pores obviously reduces with increasing heat treatment time. ICP-MS and EA quantitative analyses show that the Si80Ge20 alloys made by powder metallurgy could reduce the non-uniformity of composition.
The results of thermoelectric property measurement show that the heat treatment in air increases the carrier concentration and the electrical conductivity. The increase of SiO2 results in more phonon scattering in the lattice structure and hence reduces the thermal conductivity. The optimum paramerers of heat treatment for n-type Si80Ge20 alloys are 1523 K for 15 hours. At this condition the optimal figure of merit is 0.09 at 573 K. The optimum paramerers for p-type Si80Ge20 alloys are 1523 K for 6 hours at which the optimal figure of merit is 0.016 at 523 K.

本實驗利用真空電弧熔煉法分別製備摻雜 GaP 與 B 之N 型與 P 型 Si80Ge20 合金熱電材料,並以行星式球磨法獲得合適粒徑的粉體,再將粉體藉由1373K真空熱壓3小時與在空氣中進行1523K不同時間後熱處理來獲得緻密之合金塊材,本研究探討改變熱處理時間對 Si80Ge20 合金之熱電特性的影響。
由X光繞射分析結果顯示,在熱壓後可獲得SiGe單一相之晶體結構。而在經空氣中之熱處理後除了能使得晶粒成長與提升燒結密度外,亦會產生SiO2析出相。由FE-SEM中可觀察到,隨著熱處理時間的增加,孔隙有明顯減少的趨勢。在ICP-MS及EA定量分析可發現,利用粉末冶金方式製備Si80Ge20 合金的確能減少成分不均勻的現象發生。
由熱電特性量測結果中發現,經過空氣中熱處理後可增加載子濃度,使得導電率增加。而SiO2 的增加亦造成晶格中的聲子散射增加並減少熱傳導率。N型Si80Ge20合金之最佳熱電優值出現在1523 K熱處理15小時,量測溫度為573 K,其值為0.09。而P型SiGe合金之最佳熱電優值則出現在1523 K熱處理6小時,量測溫度為523 K,其值為0.016。
URI: http://hdl.handle.net/11455/10186
其他識別: U0005-1406200619542900
Appears in Collections:材料科學與工程學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.