Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10190
標題: Deposition of Nano-sized Platinum Particles on Post Surface Modified Carbon Paper for Catalysts in Fuel Cells
沉積奈米白金顆粒在已表面改質碳紙上應用於燃料電池觸媒
作者: 戴銘逸
Dai, Ming-Yi
關鍵字: Platinum;白金;Catalyst;Carbon paper;Surface modified;Methanol oxidation;Electrochemical surface area;Fuel cells;觸媒;碳紙;表面改質;甲醇氧化;電化學活性面積;燃料電池
出版社: 材料科學與工程學系所
引用: 1. J. Butler, Portable Fuel Cell Survey Fuel Cell Today (2009) 5. 2. R. Manoharan, J. Prabhuram, J. power source 96 (2001) 220-225. 3. Z. Liu, J. Y. Lee, W. Chen, M. Han, and L. M. Gan, Langmuir 20 (2004)181-187. 4. C. Wang, M. Waje, X. Wang, Jason M. Tang, Robert C. Haddon, and Yushan Yan, Nano Lett. 4(2) (2004) 345-348. 5. S. Wasmus, A. Kuver, J. Electroanal. Chem. 461 (1999) 14-31. 6. A.S. Arico, S. Srinivasan, V. Antonucci, Fuel Cells 2 (2001) 133-161. 7. A. Hamnett, Catalysis Today, 38 (1997) 445-457. 8. A. Hamnett and B. Kennedy J. Electrochim. Acta 33 (1988) 1613-1618. 9. N.M. Markovic, P. N. Ross Jr., Surface Science Reports 45 (2002) 121-229. 10. W.H. Lizcano-Valbuena, V. A. Paganin, E. R. Gonzalez, Electrochim. Acta 47(2002) 3715-3722. 11. T.C. Deivaraj, J.Y. Lee, J. Power Sources 142 (2005) 43-49. 12. B. Yang, Q. Lu, Y. Wang, L. Zhang, J. Lu, P. Liu, Chem. Mater. 15 (2003)3552-3557. 13. M. Watanabe, M. Uchida, S. Motoo, J. Electroanal. Chem. 229 (1987) 395-406. 14. Z. Liu, J.Y. Lee, M. Han, W. Chen, L.M. Gan, J. Mater. Chem. 12 (2002)2453-2458. 15. C. Du, B. Wang, X. Cheng, J. Power Sources, 187 (2009) 505.508. 16. X. Sun, B. Stansfield, J. P. Dodelelet, S. Desilets, Chemical Physics Letters, 363(2002) 415.421. 17. T. Bordjiba, T. Mohamedi, Le Dao H, B. Aissa, M. A. El-Khakani, ChemicalPhysics Letters, 441 (2007) 88.93. 18. M.E. Baumgartner, Ch. J. Raub, Plat. Met. Rev. 32(4) (1988) 188. 19. F. Gloaguen, J.-M. Leger, C. Lamy., A. Marmann, U. Stimming, R. Vogel, Electrochim. Acta, 44 (1999) 1805. 20. K. Shimazu, K. Uosaki, H. Kita, Y. Nodasaka, J. Electroanal. Chem. 256 (1988) 481. 21. Z.D. Wei, S.H. Chan, J. Electroanalytical Chemistry 569 (2004) 23-33. 22. V.M. Jovanovic', S. Terzic', A.V. Tripkovic', K.Dj. Popovic', J.D. Lovic, Electrochemistry Communications 6 (2004) 1254-1258. 23. M.M.E. Duarte, A.S. Pilla, J.M. Sieben, C.E. Mayer, Electrochemistry Communications 8 (2006) 159-164. 24. I. Tanahashi, A.Yoshida and A. Nishino, Carbon 28(4) (1990) 477-482. 25. X.J. Zhang, Z.M. Shen, Fuel 81 (2002) 2199-2201. 26. R.B. Mathur, Priyanka H. Maheshwari, T.L. Dhami, R.K. Sharma, C.P. Sharma, J. Power Sources 161 (2006) 790-798. 27. Alex Bauer, Elod L. Gyenge, Colin W. Oloman, Electrochimica Acta 51 (2006)5356-5364. 28. S.M.S.I. Dulal, Mi-Sook Won, Yoon-Bo Shim, Journal of Alloys and Compounds 494 (2010) 463-467. 29. E.S. Steigerwalt, G.A. Deluga, C.M. Lukehart, J. Phys. Chem. B 106 (2002)760-766. 30. Q. Lu, B. Yang, L. Zhuang, J. Lu, J. Phys. Chem. B 109 (2005) 8873-8879. 31. F. Bensebaa, A. A. Farah, D. Wang, C. Bock, X. Du, J. Kung, Y. L. Page, J.Phys.Chem. B 109 (2005) 15339-15344. 32. Z. Liu, JY. Lee, W. Chen, M. Han, L.M. Gan, Langmuir 20(1) (2004) 181. 33. X. Zhang, K.Y. Chan, Chem. Mater 15(2) (2003) 451. 34. T. Frelink, W. Visscher, J.A.R. van Veen, J. Electroanal. Chem. 382 (1995) 65. 35. O.V. Cherstiouk, P.A. Simonov, E.R. Savinova, Electrochim. Acta 48 (2003) 3851. 36. LF. Dong, R. R. Sanganna Gari, Z. Li, Michael M. Craig, SF. Hou, Carbon 48 (2010) 781-787. 37. DA. Stevens, JR. Dahn, J. Electrochem. Soc. 105 (2003) 770-775. 38. Y. Xing, J Phys Chem B. 108 (2004) 19255-19259. 39. Y. Shao, G. Yin, Y. Gao, P. Shi, J. Electrochem. Soc. 153 (2006) 1093-1097. 40. C.T. Hsieh, J.Y. Lin, J.L. Wei, Int. J. Hydrogen Energy 34 (2009) 685-693. 41. A. Pozio, M. De Francesco, A. Cemmi, F.Cardellini,L. Giorgi, J. Power Sources 105 (2002) 13-19.
摘要: 
In this study, nano-sized platinum particles were deposited on post surface modified carbon paper (SMCP) to improve the performance of the catalyst in fuel cells.
The structures and compositions of Pt on untreated carbon paper (Pt/UCP) andsurface modified carbon paper (Pt/SMCP) were investigated by field emissionscanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and inductively coupled plasma mass spectroscopy(ICP-MS). Experimental results revealed the better dispersed and smaller nano-sized Pt particles on SMCP than on UCP.
Through the cyclic voltammetry (CV) in methanol solution the Pt/SMCP catalyst revealed the higher forward oxidation peak current density (IF) and the lower reverse oxidation peak current density (IR) than the Pt/UCP. In 1M H2SO4 aqueous solution, the electrochemical surface area (ECSA) of Pt/SMCP was also much greater that of Pt/UCP. Furthermore, tuning the deposition parameters could optimize the IF/IR ratio up to 2.4×104 and ECSA up to 1216.25cm2/mg. Indeed, the optimized Pt/SMCP catalyst in this study could be a promising electro-catalyst in high-performance proton-exchange membrane fuel cells (PEMFCs) and Direct Methanol fuel cells(DMFCs).

本研究主要之目的係企圖將多孔性碳紙表面進行改質,使其表面具奈米多孔形貌,再將奈米級白金顆粒沉積在碳紙上,以期改善燃料電池觸媒的效能。
觸媒的分佈情形、結構特性以及元素組成由場發射掃描式電子顯微鏡( Field Emission Scanning Electron Microscopy )、穿透式電子顯微鏡( Transmission Electron Microscopy )、X光繞射儀( X-ray Diffraction )、感應耦合電漿質譜儀( Inductively Coupled Plasma Mass Spectroscopy )來分析。實驗結果顯示奈米白金顆粒沉積在改質後的碳紙上,相較於未改質者,其白金顆粒較小且分散較為均勻,較少有團聚現象發生。再由循環伏安法( Cyclic Voltammetry )分析甲醇氧化電流密度( IF current density為112 mA/mg )、和正向氧化峰電流密度( forward peak current density )與反向氧化峰電流密度( reverse peak current density )之比值( IF/IR ratio 為24400 ) 以及電化學活性面積(electrochemical surface area 為1216.25cm2/mg )等,證明白金觸媒在經表面改質碳紙上,對甲醇及氫原子吸脫附的催化活性以及抑制CO毒化的能力都相對提升,大幅改善觸媒效能。
另一研究結果指出利用調變沉積參數將奈米白金顆粒沉積到改質後之碳紙上確實能夠進一步大幅提升觸媒之電催化效能,展現其深具潛力而有機會應用在高效能燃料電池之觸媒。
URI: http://hdl.handle.net/11455/10190
其他識別: U0005-1807201120160400
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.