Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10191
標題: 利用回收碎玻璃燒製黏土磚之研究
Producing clay bricks containing recycled glass cullet
作者: 林育生
Lin, Yu-Sheng
關鍵字: 黏土;clay;碎玻璃;磚;燒結;產製技術;cullet;brick;sintering;production techniques
出版社: 土木工程學系所
引用: 參考文獻 1. 全國法規資料庫http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=O0050049 2. Robert Kirby, Potential Energy Savings from the Use of Recycled Glass in Brick Manufacturing, Center for Environmental Economic Development (2006). 3. Somayaji, S., Civil engineering materials, Prentice Hall, Upper Siddle River, New Jersey, p. 45 (2001). 4. 湯兆緯、陳冠宏、張朝順編譯,「土木材料」,高立圖書公司,民國91年9月出版。 5. Smith, A.S., To demonstrate commercial viability of incorporating ground glass in bricks with reduced emissions and energy savings, WRAP R&D Report GLA2-018, ISBN 1-84405-101-3 (2004). 6. Smith, A.S., Glass Addition Trials: York Handmade Bricks Co Ltd., The Waste & Resources Action Programme, ISBN 1-84405-203-6 (2005). 7. British Standards Institute. 2004. PAS 102. Specification for processed glass for selected secondary end markets. ISBN 0-580-42588-1. 8. Tay, J. H. and Yip, W. K., “Sludge Ash as Lightweight Concrete Material”, ASCE Journal of Environmental Engineering, Vol. 115, No. 1, pp. 56-64 (1989). 9. Bernd, W. and Carl, F.S, “Utilization of Sweage Sludge Ash in the Brick and Tile Industry”, Water Science and Technology, Vol. 36, No. 11, pp. 251-258 (1997). 10. 陳冠文、黃然,「利用下水污泥燒結建築用磚可行性之研究」,國立台灣海洋大學河海工程學系九十二學年度碩士專班研究成果發表會。 11. Bernd, W. and Carl, F.S., “Utilization of Sweage Sludge Ash in the Brick and Tile Industry”, Water Science and Technology,Vol. 36, No. 11,pp. 251-258 (1997). 12. Nagaharu, O. and Shiro, T., “Full Scale Application of Manufacturing Bricks from Sweage”, Wat. Sci. Tech., Vol. 36, No. 11, pp. 243-250 (1997). 13. 孫國鼎,「水庫污泥及淨水污泥再利用製磚之研究」,國立交通大學環境工程研究所碩士論文(2001)。 14. 劉又瑞,「淨水污泥混合營建廢棄土製磚及燒結人造骨材的研究」,國立交通大學環境工程所碩士論文(2001)。 15. Federico, L.M., Chidiac, S.E., and Drysdale, R.G., “The use of waste material in the manufacturing of clay brick”, In Proceedings of the 10th Canadian Masonry Symposium, Banff, Alta., 8-12 June 2005. Edited by S. Lissel, C. Benz, M. Hagel, C. Yuen, and N. Shrive. Department of Civil Engineering, University of Calgary, Calgary, Alta. pp. 322-331 (2005). 16. Leshina, V.A. and Pivnev, A.L., “Ceramic wall material using glass waste”, Glass and Ceramics, Vol. 59, Nos. 9-10, pp. 356-358 (2002). 17. Harrison, T. W., Full scale operational trials involving the use of recycled glass additions to clay bricks fired through a tunnel kiln, The Waste & Resources Action Programme, ISBN 1-84405-219-2 (2005). 18. Safiuddin, Md., Jumaat, M.Z., Salam, M.A., Islam, M.S., and Hashim, R., “Utilization of solid wastes in construction materials”, International Journal of the Physical Sciences Vol. 5(13), pp. 1952-1963 (2010). 19. Demir, I., “Reuse of waste glass in building brick production”, Waste Manage. Res., Vol. 27, pp. 572-577 (2009). 20. Algin, H.M. and Turgut, P., “Cotton and limestone powder wastes as brick material”, Constr. Build. Mater., Vol. 22, pp. 1074-1080 (2008). 21. Chidiac, S.E. and Federico, L.M., “Effects of waste glass additions on the properties and durability of fired clay brick”, Canadian J. Civil Eng., Vol. 34, pp. 1458-1466 (2007). 22. Dondi, M., Guarini, G., Raimondo, M., and Zanelli, C., “Recycling of PC and TV glass in clay bricks and roof tiles”, Waste Manage., Vol. 29, pp. 1945-1951 (2009). 23. Lin, K.L., “The effect of heating temperature of thin film transistor-liquid crystal display (TFT-LCD) optical waste glass as a partial substitute partial for clay in eco-brick”, Journal of Cleaner Production, Vol. 15, pp. 1755-1759 (2007). 24. Fisher, R.A., Statistical methods for research workers, London: Oliver & Boyd (1925). 25. Montgomery, D.C., Design and analysis of experiments, New York: Wiley (2005). 26. Muthukumar M., Mohan, D., and Rajendran, M.,“Optimization of mix proportions of mineral aggregatesusing Box Behnken design of experiment”, Cement and Concrete Composites,Vol. 25, pp. 751-758 (2003). 27. Sullivan, P.J.E.,“A probabilistic method of testing for the assessment of deterioration and explosivespalling of high strength concrete beams in flexure at high temperature”,Cement and ConcreteComposites, Vol. 26, pp. 155-162 (2004). 28. Taguchi, G., Introduction to quality engineering: designingquality into products and processes, Asian ProductivityOrganization, Tokyo, Japan (1987). 29. Roy, R.K., A Primer on the Taguchi method,Competitive Manufacturing Series, Van Nostrand Reinhold, New York (1990). 30. Panzera, T.H., Rubio, J.C., Bowen, C.R., and Walker, P.J., “Microstructural design of materials for aerostatic bearings”, Cement and Concrete Composites, Vol. 30, pp. 649-660 (2008). 31. Siddhartha, Patnaik A. and Bhatt, A.D., “Mechanical and dry sliding wear characterization of epoxy-TiO2particulate filled functionally graded composites materials using Taguchi design of experiment”,Materials and Design Vol. 32, No. 2, pp. 615-627 (2011). 32. Yousefieh, M., Shamanian, M., and Saatchi, A.,“Optimization of the pulsed current gas tungsten arc welding(PCGTAW) parameters for corrosion resistance of super duplex stainless steel (UNS S32760) weldsusing the Taguchi method”, Journal of Alloys and Compounds, Vol. 509, No. 3, pp. 782-788 (2011). 33. Chan, C.W. and Man, H.C., “Laser welding of thin foil nickeltitanium shape memory alloy”, Optics and Lasersin Engineering; Vol. 49, No. 1, pp. 121-126 (2011). 34. Bendell, A., Disney, J., and Pridmore, W.A., Taguchi Methods: Applications in World Industry, IFS Publications: Bedford (1989). 35. Raj, C. and Quen, H.L., Advanced oxidation processesforwastewater treatment: Optimization of UV/H2O2 processthrough a statistical technique, Chem. Eng. Sci. 60:5305-5311 (2005). 36. Yang, J., Peng, J., and Guo, R., Optimization and thermodynamicassessment of ferrite (Fe3O4) synthesis in simulatedwastewater, J. Hazard. Mater. 149:106-114 (2007). 37. 高傳楷,「田口法應用於透水性混凝土配比設計之研究」,國立台北科技大學碩士論文,2007。 38. 張哲維,「環氧樹脂工程性質與修補成效之研究」,國立臺灣科技大學碩士論文,2009。 39. 陳冠宇,「鹼激發爐石基膠體配比因子對其工程性質影響之研究」,國立臺灣科技大學碩士論文,2010。 40. 李輝煌,「田口方法:品質設計的原理與實務」,初版,台北,高立圖書,2000。 41. 黎正中,「穩健設計之品質工程」,台北,台北圖書,1993。 42. 吳復強,「田口品質工程」,初版,台北,全威圖書,1992。 43. Phadke, M.S., Quality engineering using robust design, Prentice Hall, Englewood Cliffs, New Jersey (1989). 44. http://www.chinabaike.com/uploads/allimg/110117/2129235Q1-0.gif 45. 潘時正、曾迪華、李釗,「下水污泥灰渣特性及再利用於水泥材料之估」,國立中央大學環境工程學刊,第五期,第115頁至129頁(1998)。 46. 賴士葆,工程經濟,華泰書局,第62-72頁(1995)。 47. Tay, J.H., and Goh, A.T.C., “Engineering properties of Incinerator Reside”, Journal of Environmental Engineering, Vol. 117, No.2 (1991). 48. 陳宜晶,利用添加劑提昇淨水汙泥燒結之材料品質研究。 49. 張添晉、王愫懃,「資源循環與再生利用」。 50. 高瑛紜、劉蘭平、王義基,「液晶面板製造業廢棄物資源化現況評估」,中華民國九十七年七月綠基會通訊專題報導。
摘要: 
磚材是以黏土為主要原料,並在高溫下燒製而成的一種建材。由於磚材具備吸引人的外觀及優異的性能,如高抗壓強度與耐久性、優越的耐火性與抗風化性、良好的隔熱性與隔音性,故長久以來它已廣泛應用於建築、土木工程及景觀設計。有鑒於國內天然資源日益枯竭及對廢棄物管理的關注日益增加,援此本研究旨在探討添加廢玻璃對所燒製黏土磚性質之影響。首先,於實驗室進行試燒,其試驗變數包括碎玻璃摻用百分比、乾燥方式、預熱時間及燒結溫度。另為求獲致最佳化之試驗成果,採用變異數分析加以探討各變數對性能指標,如密度(成品磚)、吸水率、體積膨脹率、燒失量、孔隙率及抗壓強度等的影響。試樣燒結完成後,利用掃瞄式電子顯微鏡觀測其微結構。其次,利用隧道窯試燒,以研發其燒製工藝及量產技術。研究結果顯示,燒結溫度範圍介於900℃~950℃時,燒結試樣之結構較為鬆散;但燒結溫度範圍達到1050℃時,燒結試樣之結構已呈現出緻密化。另方面,隧道窯試燒磚材之性能符合中國國家標準一等一般建築用磚之規範。此外,田口實驗設計法可有效探討各項控制因子水準組合在磚材特性上(密度、吸水率、體積膨脹率、燒失量、孔隙率及抗壓強度)的表現,並可大幅減少工作量。

Bricks are made from clay by burning it at high temperatures. With their attractive appearances and superior properties such as high compressive strength and durability, excellent fire and weather resistance, good thermal and sound insulation, bricks have been widely used for building, civil engineering work, and landscape design over a long period of time. In view of increasing concerns over natural resource increasing depletion and over waste management, this study aimed to investigate the effect of waste glass on the properties of fired clay brick. First, the test variables in a laboratory scale include cullet content, drying method, preheat time, sintering temperature. In order to obtained optimize the selected results, the analysis of variance method was used to explore the effects of the experimental factors on the performances (brick density, water absorption, bloating ratio, loss of ignition, porosity, and compressive strength) of the produced brick. The microstructures of the fired samples were investigated by scanning electron microscopy. Then, the large-scale production techniques for producing clay bricks containing recycled glass cullet was developed in a commercially available tunnel kiln. The test results showed that the structure of sintered specimen was loose at a sintering temperatures ranged from 900℃-950℃. However, the sintered specimen showed a significant densification at the sintering temperature of 1050℃. On the other hand, the characteristics of sintered specimen developed in a commercially available tunnel kiln were in compliance with CNS class Ι building bricks criteria. Moreover, Taguchi method is a promising approach for optimizing process condition of brick using recycled glass cullet and reservoir sediments and it significantly reduces the number of tests.
URI: http://hdl.handle.net/11455/10191
其他識別: U0005-2207201312395200
Appears in Collections:土木工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-102-7100062101-1.pdf13.8 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.