Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10192
標題: 電解沉積二氧化鈦應用於薄膜鋰離子電池陽極之特性研究
Characterization of Electrolytic TiO2 Deposition for Thin Film Lithium ion battery Anodes.
作者: 賴威均
Lai, Wei-Chun
關鍵字: Electrolytic deposition;電化學沉積;thin film TiO2;thin film lithium ion batteries;二氧化鈦薄膜;薄膜鋰離子電池
出版社: 材料科學與工程學系所
引用: 1. Y.P. Wu, C. Wan, C. Jiang, S.B. Fang, Introduction, Principles and Advances of Lithium Secondary Batteries, Tsinghua University Press, Beijing 2002. 2. A. Patil, V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, S.J. Yoon, Materials Research Bulletin 43 (2008) 1913-1942. 3. A. Yoshino, Japanese Patent 1989 293 (1985), to Asahi Kasei; US Patent 4,668,595 (1987). 4. P. Poizot, S.Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407 (2000) 496. 5. P. Poizot, S. Laruelle, S. Grugeon, L.Dupont, J.M. Tarascon, J. Power Sources A576 (2001) 97-98. 6. F. Badway, I. Plitz, S. Grugeon, S, Laruelle, M. Dolle, A.S. Gozdz, J.M. Tarascon, Electrochem, Solid-State Lett. 5 (2002) A115. 7. A. Fujishima, K. Honda, Nature 238 (1972) 37-38. 8. B. Oregan, M. Gratzel, Nature 353 (1991) 737-740. 9. A. Hagfelt, M. Gratzel, Accounts of Chemical Research 33 (2000) 269-277. 10. T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto Thin Solid Films 351 (1999) 260-263. 11. H. Lindstr 12. D.W. Murphy, R.J. Cava, S.M. Zahurak, A. Santoro, Solid State Ionics 413 (1983) 9-10. 13. C. Jiang, M. Wei, Z. Qi, T. Kudo, I. Honma, H. Zhou, J. Power Sources 166 (2007) 239-243. 14. V. Subramanian, A. Karki, K.I. Granaseker, F.P. Eddy, B. Rambanu, J. Power Sources 159 (2006) 186-192. 15. G..A. Batison, R. Gerbasi, M. Porchia, A. Marigo, Thin Solid Films 239 (1994) 186-191. 16. N. Ozer, H. Demiryont, J.H. Simmons, Applied Optics 30 (1991) 3661-3666. 17. H. Kikuchi, M. Kitano, M. Takeuchi, M. Matsuoka, M. Anpo, P.V. Kamat, J. Phys. Chem. B110 (2006) 5537-5541. 18. J.H. Kim, S. Lee, H.S. Im, Applied Surface Science 151 (1999) 6-16. 19. W.H. Ho, S.K. Yen, J. Electrochem. Soc. A506 (2005) 152. 20. W.H. Ho, S.K. Yen, J. Electrochem. Solid-State Lett. C134 (2005) 8. 21. H.C. Liu, S.K. Yen, J. Power Sources 159 (2006) 245. 22. W.H. Ho, S.K. Yen, Surf. Coat. Technol. 201 (2007) 7100. 23. H.C. Liu, S.K. Yen. J. Power Sources 166 (2007) 478. 24. W.H. Ho, C.F. Li, H.C. Liu, S.K.Yen, J. Power Sources 175 (2008) 897. 25. C.M. Lin, S.K. Yen, J. Electrochem. Soc. 151 (2004) D127. 26. B.D. Cullity Elements of X-Ray Diffraction, Addison-Wesley, Reading, MA (1978). 27. R. van de Krol, A. Goossens, E.A. Meulenkamp, J. Electrochem. Soc. 146 (1999) 3150. 28. M.P. Cantão J.I. Cisneous, and R.M. Torresi, J. Phys. Chem. 98 (1994) 4865-4869. 29. L.J. Hardwick, M. Holzapfel, P. Novák, L. Dupont, E. Baudin Electrochinica Acta 52 (2007) 5357-5367. 30. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, Appl. Phys. 33 (2000) 912-916. 31. G. Sudant, E. Baudrin, D. Larcher, J.M. Tarascon, J. Mater. Chem. 15 (2005) 1263-1269. 32. Y. G. Guo, Y. S. Hu, J. Maier Chem. Commun. (2006) 2783-2785. 33. D. W. Murphy, R.J. Cava, S. M. Zahurak, A. Santoro, Solid State Ionics 9-10.
摘要: 
本研究利用不同沉積時間與燒結溫度製備不同厚度TiO2薄膜應用於鋰離子電池。沉積5分鐘的薄膜呈現最均勻之表面型態,XRD分析與FE-SEM 觀察均顯示TiO2薄膜係由10~20 nm 顆粒所形成。半電池經循環伏安(CV)測試,氧化還原電位分別為2.20和1.61 V(vs. Li/Li+)。在進行充放電時,充放電平台為1.98 和 1.75 V(vs. Li/Li+)。當提高充放電電流密度電容量會明顯衰退,顯然Li+在TiO2之遷入遷出擴散決定了反應速率,最後電容量與擴散長度成正比。即使在不同厚度下進行充放電,Li+可沿著裂縫表面進行擴散,使得50圈後的電容量彼此趨於相近。沉積時間5分鐘、燒結溫度350 ℃的TiO2薄膜理論膜厚約0.3 μm且較均勻,比其他製程參數的薄膜更適合應用在薄膜鋰離子電池。

The preparation of TiO2 thin film on platinum was carried out for anodes in thin film lithium batteries. In order to optimize the best electrochemical performance, the specimens were deposited for 5, 10 and 20 min and further annealed at 350 and 500℃. The surface morphology of film deposited for 5 minutes was more uniform than the others. The TiO2 coating film consists of nano-sized particles observed by EF-SEM were 10-20 nm, consistent with XRD analyses. Cyclic voltammetry (CV) measurements show oxidation and reduction peaks at 2.20 and 1.61 V, respectively. The discharge and charge plateus were found at 1.75 and 1.98 V vs. Li+/Li by charge/discharge tests. When increasing current density, the specific capacity was dramatically decreased. It was suggested that the diffusion flux of Li+ insertion/extraction into/from TiO2 controlled the reaction rate at higher current density. Finally, the capacity was proportional to the diffusion length. Although the capacity of various prepared films in thickness were approaching one another after 50 cycles due to diffusion along crack surfaces, the more uniform EDT350-1T specimen in the thickness of 0.3 μm was better than the others when it was applied in thin film lithium ion batteries.
URI: http://hdl.handle.net/11455/10192
其他識別: U0005-1407200619582700
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.