Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10194
標題: Effect of titanium contents on the microstructure and wear behavior of Fe-based hardfacing alloy
不同鈦含量對鐵基硬面合金顯微組織與磨耗行為之影響
作者: 劉益嘉
Liu, Yi-Chia
關鍵字: Fe-based hard-facing alloy;鐵基硬面合金;Microstructure;Abrasive wear;顯微組織;乾砂磨耗
出版社: 材料科學與工程學系所
引用: 【1】龔柏康,現代銲接學,徐氏基金會出版,第709-735頁,1992年。 【2】E. Pagounis, M. Talvite and V. K. Lindroos, “Influence of the metal/ceramic interface on the microstructure and mechanical properties of HIPed iron-based composites”, Composites Science and Technology, Vol. 56, No. 11, pp. 1329-1337, 1996. 【3】P. Crook and H. N. Farmer, Metals Handbook, 18ed., American Society for Metals, Ohio, p. 758, 1992. 【4】M. B. Peterson and W. O. Winer, Wear Control Handbook, ASME, New York, p. 373, 1980. 【5】K. Gurumoorthy, “Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy”, Materials Science and Engineering A, Vol. 456, No. 1-2, pp. 11-19, 2007. 【6】C. A. Mayer, “How to select hardsurfacing materials”, Welding Design & Fabrication, Vol. 82, pp. 61-67,1982. 【7】R. Menon, “New developments in hardfacing alloys”, Welding Journal, Vol. 75 , No. 2, pp. 43-49, 1996. 【8】M. Zucchetti, “Low-activation properties of novel Cr-based materials for fusion reactors”, Journal of Nuclear Materials, Vol. 233, No. 2, pp. 1486-1490, 1996. 【9】D. J. Kotecki and J. S. Ogborn, “Abrasion resistance of iron- based hardfacing alloys”, Welding Journal, Vol.74, No. 8, pp. 269-279, 1995. 【10】R. Dasgupta, R. Thakur, M. S. Yadav and A. K. Jha, “High stress abrasive wear behaviour of a hardfacing alloy: effects of some experimental factors”, Wear, Vol. 236, pp. 368-374, 1999. 【11】C. K. Kim, S. Lee, J. Y. Jung and S. Ahm, “Effects of complex carbide fraction on high-temperature wear properties of hardfacing alloys reinforced with complex carbides”, Materials Science and Engineering A, Vol. 349, No. 1-2, pp. 1-11, 2003. 【12】K. Y. Lee, S. H. Lee, Y. Kim, H. S. Hong, Y. M. Oh and S. J. Kim, “The effects of additive elements on the sliding wear behavior of Fe-base hardfacing alloys”, Wear, Vol. 255, No. 1-6, pp. 481-488, 2003. 【13】T. Sharma, S. Maria and D. K. Dwivedi, “Abrasive wear behaviour of Fe-30Cr-3.6C overlays deposited on mild steel”, ISIJ International, Vol. 45, No. 9, pp. 1322-1325, 2005. 【14】S. Chatterjee and T. K. Pal, “Wear behavior of hardfacing deposits on cast iron”, Wear, Vol. 255, No. 1-6, pp. 417-425, 2003. 【15】S. Atamert and H. K. D. H. Bhadeshia, “Microstructure and stability of Fe-Cr-C hardfacing alloys”, Materials Science and Engineering A, Vol. 130, No. 1, pp. 101-111, 1990. 【16】A. Wiengmoon, T. Chairuangsri, A. Brown, R. Brydson, D. V. Edmonds and J. T. H. Pearce, “Microstructural and crystallographical study of carbides in 30wt.%Cr cast irons”, Acta Materialia, Vol. 53, No. 15, pp. 4143-4154, 2005. 【17】L. E. Svensson, B. Gretoft, B. Ulander and H. K. D. H. Bhadeshia, “Fe-Cr-C hardfacing alloys for high-temperature applications”, Journal of Materials Science, Vol. 21, No. 3, pp. 1015-1019, 1986. 【18】J. A. Pero-Sanz, D. Plaza, J. I. Verdeja and J. Asensio, “Metallographic characterization of hypoeutectic martensitic white cast irons:Fe-C-Cr System”, Materials Characterization, Vol. 43, No. 1, pp. 33-39, 1999. 【19】M. F. Buchely, J. C. Gutierrez, L. M. Leon and A. Toro, “The effect of microstructure on abrasive wear of hardfacing alloys”, Wear, Vol. 259, No. 1-6, pp. 52-61, 2005. 【20】M. Scholl, R. Devanathan and P. Clayton, “Abrasive and dry sliding wear resistance of Fe-Mo-Ni-Si and Fe-Mo-Ni-Si-C weld hardfacing alloys”, Wear, Vol. 135, No. 2, pp. 355-368, 1990. 【21】D. J. Kotecki and J. S. Ogborn, “Abrasion Resistance of Iron-Based Hardfacing Alloys”, Welding Research Supplement, Vol. 74, No. 8, pp. 269-279, 1995. 【22】馬爾欽柯著,何世禹譯,金屬表面磨擦破壞實習,國防工業出版社, 1990年。 【23】H. Wang, W. Xia and Y. Jin, “A study on abrasive resistance of Ni-based coatings with a WC hard phase”, Wear, Vol. 195, No. 1-2, pp. 47-52, 1996. 【24】L. Lin and K. Han, “Optimization of surface properties by flame spray coating and boriding”, Surface and Coatings Technology, Vol. 106, No. 2-3, pp. 100- 105, 1998. 【25】H. Liao, B. Normand and C. Coddet, “Influence of coating microstructure on the abrasive wear resistance of WC/Co cermet coatings”, Surface and Coatings Technology, Vol. 124, No. 2-3, pp. 235-242, 2000. 【26】M. Li, A. Kar, V. Desai and A. Khanna, “High-temperature oxidation resistance improvement of titanium using laser surface alloying”, Journal of Materials Science, Vol. 30, No. 20, pp. 5093-5098, 1995. 【27】H. Berns and S. Koch, “Influence of abrasive particles on wear mechanism and wear resistance in sliding abrasion tests at elevated temperatures”, Wear, Vol. 233-235, pp. 424-430, 1999. 【28】M. Dumovic, “Repair and maintenance procedures for heavy machinery components”, Welding Innovation, Vol. 20, No. 1, pp. 1-5, 2003. 【29】Y. N. Liu and E. K. Asibu, “Experimental study of dual-beam laser welding of AISI4140”, Welding Journal, Vol. 76, No. 9, pp. 342-348, 1997. 【30】S. Kou, Welding Metallurgy, ed. 2, John Wiley & sons, Inc., U.S.A, pp. 1- 34, 1987. 【31】C. M. Chang, C. M. Lin, C. C. Hsieh, J. H. Chen and W. Wu, “Micro- structural characteristics of Fe-40wt%Cr-xC hardfacing alloys with [1.0-4.0 wt%] carbon content”, Journal of Alloys and Compounds, Vol. 487, No. 1-2, pp. 83-89, 2009. 【32】A. Durgutlu, “Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel”, Materials & Design, Vol. 25, No. 1, pp. 19-23, 2004. 【33】 L. Jeffus, Welding: Principles and Applications, ed. 5, Thomson & Delmar Learning, inc., U.S.A, pp. 355-356, 2004. 【34】R. Menon, “New developments in hardfacing alloys”, Welding Journal, Vol. 75, No. 2, pp. 43-46, 1996. 【35】E. N. Gregory and M. Bartle, Welding Surfacing and Hardfacing, The welding institute, 1980. 【36】H. O. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes publications, New jersey, pp. 100-115, 1996. 【37】L. Lu, H. Soda, and A. Mclean, “Microstructure and mechanical properties of Fe-Cr-C eutectic composites”, Materials Science and Engineering A, Vol. 347, No. 1-2, pp. 214-222, 2003. 【38】Y. Matsubara, N. Sasaguri, K. Shimizu and S. K. Yu, “Solidification and abrasion wear of white cast irons alloyed with 20% carbide forming elements”, Wear, Vol. 250, pp. 502-510, 2001 【39】R. Kejžar and J. Grum, “Hardfacing of wear-resistant deposits by MAG welding with a flux-cored wire having graphite in its filling”, Materials and Manufacturing Processes, Vol. 20, No. 6, pp. 961-976, 2005. 【40】C. Fan, M. C. Chen, C. M. Chang and W. Wu, “Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe-Cr-C hardfacing alloys”, Surface and Coatings Technology, Vol. 201, No. 3-4, pp. 908-912, 2006. 【41】Y. F. Liu, Z. Y. Xia, J. M. Han, G. L. Zhang and S.Z. Yang, “Microstructure and wear behavior of (Cr,Fe)7C3 reinforced composite coating produced by plasma transferred arc weld-surfacing process”, Surface and Coatings Technology, Vol. 201, No. 3-4, pp. 863-867, 2006. 【42】J. Asensio, J. A. Pero-Sanz and J. I. Verdeja, “Microstructure selection criteria for cast irons with more than 10 wt.% chromium for wear applications”, Materials Characterization, Vol. 49, No. 2, pp. 83-93, 2002. 【43】A. Wiengmoon, T. Chairuangsri and J.T.H. Pearce, “A microstructural study of destabilized 30wt%Cr-2.3wt%C high chromium cast iron”, ISIJ International, Vol. 44, pp. 396-403, 2004. 【44】S. G. Sapate and A. V. Rama Rao, “Effect of carbide volume fraction on erosive wear behavior of hardfacing cast irons”, Wear, Vol. 256, No. 7-8, pp. 774-786, 2004. 【45】Y. Zhang, J. Li, L. Zhou and S. Xiang, “A theoretical study on the chemical bonding of 3d-transition-metal carbides”, Solid State Communications, Vol. 121, No. 8, pp. 411-416, 2002. 【46】Y. J. Liang and Y. C. Che, Thermodynamic Data Handbook of Inorganic Substances, Northeastern University Press, Shengyang, p. 328, 1994. 【47】W. N. Zhang, H. Y. Wang, P. J. Wang, J. Zhang, L. He and Q. C. Jiang, “Effect of Cr content on the SHS reaction of Cr-Ti-C system”, Journal of Alloys and Compounds, Vol. 465, No. 1-2, pp. 127-131, 2008. 【48】A. B. Jacuinde, R. Correa, J. G. Quezada and C. Maldonado, “Effect of titanium on the as-cast microstructure of a 16% chromium white iron”, Materials Science and Engineering A, Vol. 398, No. 1-2, pp. 297-308, 2005. 【49】R. J. Chung, X. Tang, D. Y. Li, B. Hinckley and K. Dolman, “Effects of titanium addition on microstructure and wear resistance of hypereutectic high chromium cast iron Fe-25wt.%Cr-4wt.%C”, Wear, Vol. 267, No. 1-4, pp. 356 -361, 2009. 【50】V. Raghavan, “Phase Diagram Evaluations: Section II C-Fe-Ti (Carbon-Iron- Titanium)”, Journal of Phase Equilibria, Vol. 24, No. 1, pp. 62-66, 2003 【51】S. A. Fedosov, “Effect of laser treatment on the retained austenite content of carbon and chromium steels”, Physics and chemistry of materials treatment, Vol. 24, No. 5, pp. 441-444, 1990. 【52】G. V. Raynor and V. G. Rivlin, “Phase equilibria in iron ternary alloys”, International Metals Reviews, Vol. 29, pp. 299-327, 1984. 【53】G. Azimi and M. Shamanian, “Effects of silicon content on the microstructure and corrosion behavior of Fe-C-C hardfacing alloys”, Journal of Alloys and Compounds, Vol. 505, pp. 598-603, 2010. 【54】A. Westgren and G. Phragmen, “On the double carbide of high speed steel”, Transactions of the American Society for Steel Treating, Vol. 13, pp. 539- 554, 1928. 【55】G. Hagg, “Regularity in crystal structure in hydrides, borides, carbides and nitrides of transition elements”, Zeitschrift fur Physikalische Chemie, Vol. B12, pp. 33-56, 1931. 【56】H. J. Goldschmidt, “The structure of carbides in alloy steels I. General survey”, Journal of the Iron and Steel Institute, Vol. 160, pp. 345-362, 1948. 【57】K. Kuo, “Alloy carbide precipitated during the fourth stage of tempering. Electron microscopic examinations”, Journal of the Iron and Steel Institute, Vol. 184, pp. 258-268, 1956. 【58】G. P. Tilly, “Erosion caused by impact of solid particles”, ed. 13, Treatise on Materials Science and Technology, New York, pp. 287-319, 1979. 【59】DIN 50320 : Wear; Terms. Systematic Analysis of Wear Processes. Classification of Wear Phenomena, Verschleiss-Begriffe, Analyse von Verschleissvorgangen, Gliederung des Verschleissgebietes. Beuth Verlang, Berline, 1979. 【60】E. Rabinowicz, Friction and Wear of Materials, John Wiley and Sons, Inc, NewYork, 1965. 【61】J. H. Tylcyzak and A. Oregon, Abrasive Wear, ASM Handbook, Vol. 18, pp. 184-186, 1992. 【62】K. Shimizu, T. Noguchi, T. Kamada and H. Takasaki, “Progress of erosive wear in spheroidal graphite cast iron”, Wear, Vol. 198, No. 1-2, pp. 150-155, 1996. 【63】R. E. Winer and I. M. Hutchings, “The role of adiabatic shear in solid particle erosion”, Wear, Vol. 34, No. 2, pp. 141-148, 1975. 【64】劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚編著,工程材料科學,全華 科技圖書,第834-837頁,1995年。 【65】H. Karl and G. Zum, Microstructure and Wear of Materials, Elsevier Science Publishers B.V., New York, pp. 73-246, 1987. 【66】K. H. Z. Gahr, Microstructure and wear of materials, ed. 1, Elsevier science publishing compony, New York, pp. 166-167, 1987. 【67】A. V. Levy, “The platelet mechanism of erosion of ductile metals”, Wear, Vol. 108, No. 1, pp. 1-21, 1986. 【68】B. Stanisa and V. Ivusic, “Erosion behavior and mechanisms for steam turbine rotor blades”, Wear, Vol. 186-187, No. 2, pp. 395-400, 1995. 【69】M. G. Gee, R. H. Gee and I. McNaught, “Stepwise erosion as a method for determining the mechanisms of wear in gas borne particulate erosion”, Wear, Vol. 255, No. 1-6, pp. 44-54, 2003. 【70】陳豐彥、何信威,燒結摩擦材料,粉末冶金手冊,中華民國粉末冶金協會,第445-457頁,1994年。 【71】機械工程手冊編輯委員會,金屬材料,五南圖書出版公司,第6-5–6-6頁,2002年。 【72】“Standard Practice Conducting Dry Sand/Rubber Wheel Abrasion Tests”, ASTM G65-85 in 1990 Annual Book of ASTM Standards, Section 3, Vol. 03.02, Wear and Erosion, Metal Corrosion, pp. 235-247, 1990. 【73】H. Ohtani, T. Tanaka, M. Hasebe and T. Nishizawa, “Calculation of the Fe-C-Ti ternary phase diagram”, Calphad, Vol. 12, No. 3, pp. 225-246, 1988. 【74】R. C. D. Richardson, “The abrasive wear of metals”, Wear, Vol. 14, pp. 290- 291, 1969.
摘要: 
This research discussed the effect of Ti content on the microstructure and wear behavior of Fe-based hard-facing alloys. A series of Fe-Cr-C-Si-Mn-xTi alloy fillers were deposited on SS400 low carbon steel by gas tungsten arc welding (GTAW). Optical microscope, electron microscope and X-ray diffraction were used to investigate the microstructural characteristics. Wear resistance was estimated with sand wheel wear test, and the worn surfaces were observed by scanning electron microscope.
The microstructure of Fe-based hard-facing alloy without of Ti content consisted of primary γ, eutectic [γ+(Fe,Cr)3C], eutectic [γ+(Fe,Cr)2C], and a few martensite. As the Ti content of the hard-facing alloy increased, the microstructure were composed of primary TiC carbide, γ phase, and eutectic [γ+(Fe,Cr,Ti)3C]. The amount and size of the TiC carbide in microstructure was a proportion to the Ti content in Fe-based hard-facing alloy. Nevertheless, the amount eutectic [γ+(Fe,Cr,Ti)3C] will decrease, as the Ti content increased.
According to the results of hardness test and sand wheel test, the lowest hardness (HRC54.93) and the highest wear loss (0.288g) were obtained as the hard-facing alloy has no Ti content. The highest hardness of HRC60.29 and the lowest weight loss of 0.041g were produced, as Ti addition was 4.87 wt%.
The characteristics of worn surface showed that the wear mechanisms in the microstructure of primary austenite and small size TiC carbide were ploughing, micro-void, and fracturing of carbides. Finally, in the microstructure of big size TiC carbide, the wear mechanism was discontinuous ploughing.

本研究探討添加不同鈦含量對鐵基硬面合金顯微組織與磨耗行為之影響,利用鎢極惰性氣體遮護電弧銲接法(Gas Tungsten Arc Welding, GTAW),將預先配製的Fe-Cr-C-Si-Mn-xTi合金填料(x=0.00~7.25 wt%),銲覆於SS400低碳鋼基材表面上。銲覆層之顯微結構藉由光學顯微鏡、電子顯微鏡及X-ray繞射分析進行探討,最後利用乾砂磨耗試驗分析其耐磨耗性質,並以掃瞄式電子顯微鏡(SEM)觀察磨耗面探討其磨耗行為。
本研究在合金填料中添加六組不同配比之鈦金屬,經GTAW銲覆後,無添加鈦金屬組別顯微組織主要由沃斯田鐵相、少量麻田散鐵相、沃斯田鐵與(Fe,Cr)3C及沃斯田鐵與(Fe,Cr)2C之共晶組織所構成。隨鈦金屬添加量增加,顯微組織則由初晶TiC碳化物、沃斯田鐵相、沃斯田鐵與(Fe,Cr,Ti)3C共晶組織所組成。隨鈦含量增加銲覆層中之TiC碳化物數量與尺寸會增加,而沃斯田鐵與(Fe,Cr)3C共晶組織則會減少,並發現銲覆層之硬度與抗磨耗性隨TiC碳化物數量增多而呈上升趨勢。硬度測試與乾砂磨耗試驗之結果顯示,無添加鈦金屬之銲覆層抗磨耗性最差其硬度值為HRC54.93,磨耗量為0.288g,隨鈦含量之增加,銲覆層之抗磨耗性質有上升的趨勢,當銲覆層鈦含量增加至4.87 wt%時,可得最高硬度值HRC60.29,其磨耗量下降至0.041g,抗磨耗性最佳。
乾砂磨耗試驗磨耗面之觀察結果顯示,顯微組織中具初晶沃斯田鐵相及小尺寸TiC碳化物者,其磨耗機制以塑性犁溝、微坑洞及碳化物剝落為主,顯微結構中之初晶相為大尺寸TiC碳化物者,其磨耗機構為不連續犁溝為主。
URI: http://hdl.handle.net/11455/10194
其他識別: U0005-1808201111063800
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.