Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10203
DC FieldValueLanguage
dc.contributor張立信zh_TW
dc.contributor林義成zh_TW
dc.contributor鄭憲清zh_TW
dc.contributor侯光華zh_TW
dc.contributor.advisor吳威德zh_TW
dc.contributor.author葉獻文zh_TW
dc.contributor.authorYeh, Hsien-Wenen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:44:31Z-
dc.date.available2014-06-06T06:44:31Z-
dc.identifierU0005-1707200611380300zh_TW
dc.identifier.citation【1】李勝隆、劉國雄,工程材料科學,全華科技圖書,第7-16頁, 民國91年。 【2】國家實驗研究院儀器科技研究中心,真空技術與運用,全華科 出版社,第543-560頁,民國92年。 【3】張吉本,“真空硬銲專題”,HyPaL研討會,工業技術研究 院,新竹,台灣,1996年4月。 【4】D. R. Milner, “Principles Related to Wetting and Spreading,” British Welding Journal, Vol. 5, p. 90, 1958. 【5】何康生,真空擴散銲接,國防工業出版社,第15-17頁,民國 95年。 【6】張進春、許憲能,同步輻射彎段腔體維護手冊,第10-12頁, 民國95年。 【7】吳信輝,碩士論文,“電子束或電弧銲接鎂合金為結構與機械 性質分析” ,材料科學研究所,國立中山大學,民國94年。 【8】Website:http://www.daihen-usa.com/ 【9】蘇程裕、周長彬、吳柏成與劉茂賢,真空硬銲的原理與應用, 工業材料,第58-62頁,民國95年。 【10】M. M. Schwartz, Brazing, ASM International,USA,pp. 6- 12,1989. 【11】莊東漢,低溫擴散接合填料研究開發,金屬工業研究發展中 心,經濟部九十二年度科技研究發展專案合作研究計畫。 【12】儲德鋒,碩士論文,“鋁/銅液相擴散接合研究與應用”,機 械工程研究所,國立中正大學,第18-19頁,民國92年。 【13】陳俊榮、劉亦凡,碩士論文,“鋁合金表面經臭氧水清洗之 真空釋氣研究”,國立清華大學,生醫工程與環境科學系, 第5-10頁,民國95年。 【14】S.W. Wynn and S. Eorpe, “Welding of Airframes using Friction Stir,” Aircraft Technologies, Vol.3, pp . 5-6, 2001. 【15】A.M. Sutton,B. Yang,.A.P. Rey,J. Yan,“Bonded Microstructure in 2024-T351 and 2524-T351 Aluminum Friction Stir Welds Part II.Mechanical Characterization,”Materials Science and Engineering ,pp. 66-74, 2004. 【16】William D. Callister, JR,“Fundametals of Materials Science and Engineering,”John Wiley & Sons, nc. New York ,pp. 130-139, 1993. 【17】D. J. Stephenson, “Diffusion Bonding,” Distributed by Chapman & Hall North Way, England,pp. 12-18, 1983. 【18】Bondl. A“Spreading of liquid metals on solid surface chemistry of high energy substances ,” Chem.Rev.Vol.2, pp. 58-417, 1953. 【19】R.S. Bushby and V.D. Scott,“Joining Aluminum/nicalon Composite by Diffusion Bonding,” Composites Engineering, Vol.5, No.8 , pp. 1029-1042, 1995. 【20】C.J. Zhan, T.H Yu and C.H. Koo,“Reep Behavior of Ti–25Al–10Nb Titanium Aluminide Intermetallic Alloy,”Materials Science and Engineering , Vol.435, pp. 698-704, 2006. 【21】A. Rabinkin,“Fundamental aspects of the brazing process,”20th,International, AWS Brazing & Soldering Conf, p.4, 1989. 【22】A.Kim and L.F. Su,“The Brazing’s Question Paste or Preforms,”Welding Journal, pp. 55-79, 2007. 【23】Feduska, W, The nature of high temperature brazing alloy elements into heat resisting alloys, Weld. J., Vol. 40(2) Feb, pp.81-89, 1961. 【24】M. Schwartz,“Brazing For the engineering technologist,”Manufacturing Processes and Materials Series, New York, pp. 289-292, 1995. 【25】J. M. Howe,“Atomic Structure Composition Mechanisms and Dynamics of Transformation Interfaces in Diffusional Phase Transformations,”Materials Transactions,JIM, Vol.39,pp. 3-23, 1998. 【26】T. Akatsu, N. Hosoda, T. Suga, and M. Ruhle,“Atomic Structure of Al/Al Interface Formed by Surface Activated Bonding,”Journal of Materials Science, Vol.34, pp. 4133-4139, 1999. 【27】N.B. Din and S.J. Pen,“Direct Experimental Determination of the Atomic Structure at Internal Interfaces,”Journal of Physics, Vol. 29, pp. 1779-1798, 1996. 【28】G.H. Ro, E.M. Tin, J.P. Hirth and H. Kung,“On the Strengthening effects of Interfaces in Multilayer fcc Metallic Composites,” Philosophical Magazine , Vol.82, pp. 643-664, 2002. 【29】J. Wang, Y. J. Li, H. J. Ma and Y.S. Yin, “Microstructure and Diffusion Kinetics at the Bonded Fe-16Al/Cr18-Ni8 interface, ”Reaction Kinetics and Catalysis Letters, Vol. 87 ,pp. 67-75, 2005. 【30】Y.J. Li, J. Wang, Y.S. Yin and H.Q. Wu,“Phase Constitution near the Interface zone of Diffusion Bonding for Fe3Al/Q235 Dissimilar Materials,” Scripta Materialia,Vol. 47, pp. 851-856, 2002. 【31】R.C. Pendrous, A.N.Bramley and G.Pollard,“Cold Roll and Indent Welding of Some Metals,”Metals Technology,Vol. 11 ,pp. 280-289, 1984. 【32】中村光雄,異種金屬常溫壓接、熔接技術,第一版,第35-39 頁,民國97年。 【33】H. D. Manesh and A. K. Taheri,“Bond Strength and Formability of an Aluminum-Clad Steel Sheet,” Journal of Alloys and Compounds Vol. 361, pp. 138- 143, 2003. 【34】ASM, Alloy and Phase Diagram, The Materials Information Saciety, USA, pp. 688-850, 1880. 【35】黃俊琦,金屬材料手冊,機械技術出版社,第346-416頁,民 國83年5月。 【36】ASM, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, The Materials Information Society, USA, pp. 344-485,1980. 【37】ASM, Atlas of Microstructure of Industrial Alloys, Metals Handbook, The Materials Information Society,USA,p.348, 1980. 【38】中華民國國家標準CNS,金屬材料拉伸試驗試片規範 CNS2112,經濟部標準檢驗局,民國94年。 【39】ASM, Welding Brazing and Soldering, Metals Handbook, The Materials Information Society, USA, pp. 328- 347,1980. 【40】Adixen, Vacuum technology, Kalistene Conseil, France, pp. 275-283, 2006.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10203-
dc.description.abstract本實驗採用真空硬銲製程來接合鋁合金與無氧銅兩種金屬材質,其應用於腔體、加熱器、冷卻板等光電與半導體製程設備。因為鋁、銅具熱傳導性佳、活性高之特性,若採用氬銲或CO 銲等 銲接方式難以獲得良好的接合效果。以雷射銲接或電子束銲接,雖可獲得品質較佳之銲道,卻有不易滲透、設備與維護成本昂貴等問題。利用真空硬銲製程來克服Al、Cu銲接時所產生的困難,藉由填料熔融產生原子擴散及毛細現象在不熔融母材的情況下結合同種或異種金屬,尤以異種材質的接合或形狀複雜難以接合的工件,皆可達到良好的接合效果。 由實驗結果得知;Al/Al、Cu/Cu與AlCu三組試片經真空硬銲製程,其抗拉強度皆可達100~125 MPa,約原材料1/3。使用Al/Cu合金填料會在擴散層析出硬、脆的介金屬化物,如Al2CuMg、AlCu與AlCuMg,過多的析出造成強度降低。加入退火製程,能有效的降低介金屬化合物的析出量。接合前施予適當的壓力(80~100 MPa),也可提升銲道的強度。此銲接製程的氣密性亦佳,氦氣測漏測得漏率可達3.6x10-11 Pa×m3/s。zh_TW
dc.description.abstractThis experiment study put an emphasis on welding aluminum alloy (A1 6061-T6) and oxygen free copper by vacuum brazing. The technique can be extensively applied to manufacture equipments of optoelectronics and semiconductor industries such as the chamber, susceptor, and cooling plate. Because aluminum and copper both possess high thermal conductivity and high activity, it is difficult to produce a fine joining between them by using TIG or CO2 welding. Although there's a way to gain better quality of weld metal by laser welding or electron-beam welding, some problems like the filtration and expensive maintain cost still exist. By the way of melting the filler will also bring the diffusion and the capillary attraction, and that the same or different kinds of metal can be welded well without melting the original material, especially the different ones and the complicated shapes. According to the experiment we can come to a conclusion that A1/A1, Cu/Cu, and AL/Cu once passed through the vacuum blazing, the ultimate tensile strength could reach 100-125 MPa. The diffuse layer will precipitate some hard and crispy inter-metallic compounds, for instance, Al2CuMg, AlCu and AlCuMg, but too much precipitation will decrease the strength. If we plus annealing during vacuum brazing, the amount of precipitation will be reduced effectively. Giving appropriate pressure before the welding process can increase the strength of the weld metal. This kind of welding manufacturing has fine pressurization, the leaking test can also reach 3.6x10-11 Pa×m3/s.en_US
dc.description.tableofcontents總目錄 摘要 …………………………………………………………………I Abstract……………………………………………………………II 總目…………………………………………………………………IV 表目 ………………………………………………………………VII 圖目…………………………………………………………………IX 第一章、前言………………………………………………………1 第二章、文獻回顧…………………………………………………3 2-1 硬銲原理與技術………………………………………………3 2-1-1 硬銲的發展與應用…………………………………………4 2-1-2 真空硬銲產業概況…………………………………………10 2-1-3 真空硬銲接合特性…………………………………………12 2-2 影響硬銲的因素………………………………………………13 2-2-1 擴散…………………………………………………………13 2-2-2 潤濕系統與界面能…………………………………………15 2-2-3 毛細作用……………………………………………………16 2-2-4 退火…………………………………………………………18 2-2-5 硬銲在接合介面交互作用…………………………………20 2-3 接合過程………………………………………………………20 2-4 界面擴散機構與界面分析……………………………………21 2-5 研究主題規劃…………………………………………………23 2-6 實驗材料性質…………………………………………………24 第三章、實驗步驟…………………………………………………29 3-1實驗流程與方法 ………………………………………………29 3-1-1材料製作與銲接前處理 ……………………………………31 3-1-2 填料的選擇…………………………………………………32 3-2 製程參數規劃…………………………………………………33 3-3 檢測材料試片規劃……………………………………………40 第四章、結果與討論 ………………………………………………44 4-1 顯微結構分析…………………………………………………44 4-1-1 擴散接合界面組織…………………………………………47 4-1-2 擴散機制……………………………………………………53 4-2 不同壓力對於真空硬銲的影響………………………………55 4-3 機械性質分析…………………………………………………57 4-3-1 硬度量測……………………………………………………57 4-3-2 拉伸測試……………………………………………………61 4-3-3缺陷的產生 …………………………………………………63 4-3-4 試片斷裂型態觀察…………………………………………69 4-4 氦氣測漏………………………………………………………76 第五章、結論 ………………………………………………………78 第六章、參考文獻…………………………………………………80 表目錄 表1-1 銲接瑕疵分類表……………………………………………2 表2-1 硬銲的定義…………………………………………………4 表2-2 軟銲、硬銲與傳統熔銲的比較……………………………7 表2-3 鋁合金施銲環境檢查表……………………………………8 表2-3 金屬材料熔接難易度比較表………………………………9 表2-4 硬銲母材/填料選擇參考表 ………………………………9 表2-5 鍛造用鋁合金6061-T6板材之化學成分 …………………25 表2-6 鍛造用鋁合金6061-T6板材之機械性質 …………………25 表2-7 鍛造用鋁合金6061-T6板材之物理性質 …………………25 表2-8 電解銅允許最大電阻值,測試溫度20℃…………………27 表2-9 UNS 銅金屬類別編號表……………………………………27 表2-10 UNS 銅金屬類別材質狀態之機械性質 …………………28 表2-11 退火銅導電率與電阻值等值對照表 ……………………28 表3-1 鋁合金化學清洗步驟………………………………………31 表3-2 無氧銅化學清洗步驟………………………………………31 表3-3 不同硬銲填料最佳間隙……………………………………32 表3-4 實驗參數表…………………………………………………33 表3-5 Al/Al 試片實驗參數表……………………………………37 表3-6 Cu/Cu 試片實驗參數表……………………………………38 表3-7 Al/Cu 試片實驗參數表……………………………………39 表4-1 Al/Cu試片介金屬成分分析數據表 ………………………50 表4-2 熔融區成分與原材(Al 6061-T6)主要元素比較表……54 表4-3 壓力試片與銲後熔融層厚度的比較數據…………………56 表4-4 不同壓力下試片抗拉強度與伸長量結果數據表…………62 圖目錄 圖1-1 鍍膜製程腔體………………………………………………2 圖2-1 硬銲方法及分類……………………………………………6 圖2-2 EBW AZ31 銲速20mm/s下銲道剖面圖 ……………………8 圖2-4 自動化硬銲示意圖…………………………………………10 圖2-5 電子束彎段腔體圖…………………………………………11 圖2-6 PECVD製程加熱器 …………………………………………11 圖2-7 不同濃度A、B原子所構成相鄰原子面……………………13 圖2-8 A、B原子擴散梯度變化……………………………………14 圖2-10 潤濕系統示意圖 …………………………………………17 圖2-11 毛細作用與接合關係示意圖 ……………………………17 圖2-12 鈦合金(Ti-40Al-10Nb)經退火處理型態圖 …………19 圖2-13 減少應力集中的接合設計 ………………………………19 圖2-14 硬銲過程示意圖 …………………………………………21 圖3-1 實驗流程圖…………………………………………………29 圖3-2 真空硬銲流程圖……………………………………………30 圖3-3 真空硬銲溫控曲線圖………………………………………30 圖3-4 Au-Cu系統二元相圖 ………………………………………36 圖3-5 鋁系化合物共晶溫…………………………………………36 圖3-6 拉伸試片加工圖……………………………………………40 圖3-7 拉伸試片圖…………………………………………………41 圖3-8 連接端頭圖…………………………………………………41 圖3-9 氦氣測漏儀…………………………………………………41 圖3-9 硬度量測相對位置示意圖…………………………………42 圖3-10 掃描式電子顯微鏡 ………………………………………43 圖4-1 Al/Al試片擴散層金相 ……………………………………45 圖4-2 Al/Cu試片擴散層金相 ……………………………………46 圖4-3 Cu/Cu試片擴散層金相 ……………………………………46 圖4-4 Al/Al試片擴散層金相 ……………………………………48 圖4-5 Al/Al試片擴散層成份分析 ………………………………48 圖4-6 Al/Al試片擴散層X-ray繞射………………………………49 圖4-7 Al/Cu試片擴散層顯微結構圖 ……………………………49 圖4-8 Al- Mg系統二元相圖………………………………………50 圖4-9 Al/Cu試片擴散層X-ray繞射圖……………………………51 圖4-10 Cu/Cu試片擴散層微觀組織圖……………………………51 圖4-11 Cu/Cu試片擴散層X-ray繞射 ……………………………52 圖4-12 Cu/Cu擴散層成分分析圖…………………………………52 圖4-13 Al/Cu熔融區定點成分分析圖……………………………54 圖4-14 Al/Cu接合件元素擴散示意圖……………………………55 圖4-15 壓力與擴散層厚度關係圖 ………………………………56 圖4-16 Al/Al試片擴散層硬度量測圖……………………………57 圖4-17 Al/Al試片擴散層硬度量測圖……………………………58 圖4-18 Al/Cu試片擴散層硬度量測圖……………………………59 圖4-19 Al/Al試片經過退火擴散層硬度量測圖…………………59 圖4-20 Al/Cu退火試片擴散層硬度量測…………………………60 圖4-21 Cu/Cu試片擴散層硬度量測圖……………………………60 圖4-22 強度與伸長量的關係圖 …………………………………62 圖4-23 試片平均強度與基材強度的比較 ………………………63 圖4-24 Al/Al試片裂痕微觀圖……………………………………65 圖4-25 Al/Cu試片裂痕微觀圖……………………………………65 圖4-26 Cu/Cu試片接合介面圖……………………………………66 圖4-27 Cu/Cu試片接合界面圖……………………………………66 圖4-28 Cu/Cu試片經退火界面圖…………………………………67 圖4-29 未退火處理之Al/Cu試片接合界面圖……………………67 圖4-30 經退火處理Al/Cu試片接合界面圖………………………68 圖4-31試片退火時間與抗拉強度的關係圖………………………68 圖4-32 Al/Al拉伸試片破斷面圖…………………………………71 圖4-33 Al/Al拉伸試片剖面圖……………………………………71 圖4-34 Cu/Cu拉伸試片破斷面……………………………………72 圖4-35 Cu/Cu拉伸試片剖面圖(a) ……………………………72 圖4-36 Cu/Cu拉伸試片剖面圖(b) ……………………………73 圖4-37 Cu/Cu拉伸試片破斷型態示意圖…………………………73 圖4-38 Al/Cu拉伸試片破斷面圖…………………………………74 圖4-39 拉伸試片Al基材剖面 ……………………………………74 圖4-40 伸試片Cu基材剖圖 ………………………………………75 圖4-41 Al接合端斷裂型態圖 ……………………………………75 圖4-42 Cu接合端斷裂型態圖 ……………………………………76 圖4-43 氬銲施銲銲道測漏結果 …………………………………77 圖4-44 空硬銲銲道測漏結果 ……………………………………77zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1707200611380300en_US
dc.subjectVacuum Brazingen_US
dc.subject真空硬銲zh_TW
dc.title鋁、銅合金真空硬銲之研究zh_TW
dc.titleStudy on vacuum brazing of Al and Cu alloysen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.