Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10210
標題: 聚異丙基丙烯醯胺/奈米中空二氧化矽顆粒藥物釋放材料之製備與特性研究
Preparation and characterization of thermosensitive poly(N-isopropylacrylamide) grafted to hollow silica nanoparticles
作者: 戴麗華
Dai, Li-Hua
關鍵字: thermosensitive;溫度敏感型;biocompartible;layer-by-layer;lower critical solution temperature;drug carrier;生物相容性;層接層;相轉變溫度;藥物載體
出版社: 材料科學與工程學系所
引用: ﹝1﹞ 黃博偉,奈米生醫材料技術發展趨勢與商機探討,經濟部技術處(2004) ﹝2﹞ 趙蘭英,生醫材料的研究與發展,工業技術研究院(2002) ﹝3﹞ 賴宏仁,奈米生醫材料與應用講義,中興大學材料科學與工程學系(2006) ﹝4﹞ Z Lu, S Wang, Polymeric Microencapsulated Drug Del ivery System, Journal of Functional Polymer, 10, 429(1997) ﹝5﹞ W. Tian, X.D Fan, W. Chen, Y. Y. Lu, Research Progress in Polymer ic Drug Del ivery Carriers, Polymer Materials Science and Engneerng, 22, 4(2006) ﹝6﹞ F Caruso, Nanoengineering of Particle Surfaces, Adv. Mater., 13, 11(2001) ﹝7﹞ O.D. Velev, P.M.Tessier, A.M. Lenhoff, E.W. Kaler, A class of porous metallic nanostructures, Nature, 401,548(1999) ﹝8﹞ P. Bouillot, B. Vincent, A Comparison of the Swelling Behaviour of Copolymer and Interpenetrating Network Microgel Particles, Colloid Polym Sci., 278, 74(2000) ﹝9﹞ W.C. Bell, K.S. Booksh, M.L. Myrick, Monitoring Anhydride and Acid Conversion in Supercritical/Hydrothermal Water by in Situ Fiber-Optic Raman Spectroscopy, Anal. Chem., 70, 332(1998) ﹝10﹞ J.W. Kim, Y.G. Joe, K.D. Suh, Morphology of micron-sized polystyrene particles crosslinked with urethane acrylate, Colloid Polym. Sci., 277, 252(1999) ﹝11﹞ J. H. Kim, S. Fujita, S. Shiratori, Fabrication and characterization of TiO2 thin film prepared by a layer-by-layer self-assembly method, Thin Solid Flims, 499,83(2006) ﹝12﹞ G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, 277, 1232(1997) ﹝13﹞ F. Caruso, M.A. Caruso and H. Möhwald, Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating, Science, 282, 1111(1998) ﹝14﹞ D.I. Gittins, F. Caruso, Multilayered Polymer Nanocapsules Derived from Gold Nanoparticle Templates, Adv. Mater., 12, 1947(2000) ﹝15﹞ D.I. Gittins, F. Caruso, Tailoring the Polyelectrolyte Coating of Metal Nanoparticles, J. Phys. Chem. B, 105, 6846(2001) ﹝16﹞ K.S. Mayya, B. Schoeler, F. Caruso, Preparation and Organization of Nanoscale Polyelectrolyte-Coated Gold Nanoparticles, Adv. Funct. Mater., 13, 183(2003) ﹝17﹞ Y.M. Lvov, R.R. Price, J.V. Selinger, A. Singh, M.S. Spector, J.M. Schnur, Imaging Nanoscale Patterns on Biologically Derived Microstructures, Langmuir, 16, 5932(2000) ﹝18﹞ N.G. Balabushevitch, G.B. Sukhorukov, N.A. Moroz, D.V. Volodkin, N.I. Larionova, E. Donath, H. Möhwald, Encapsulation of proteins by layer-by-layer adsorption of polyelectrolytes onto protein aggregates: Factors regulating the protein release, Biotechnol. Bioeng., 76, 207(2001) ﹝19﹞ F. Caruso, D. Trau, H. Möhwald, R. Renneberg, Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules, Langmuir, 16, 1485(2000) ﹝20﹞ R. Georgieva, S. Moya, M. Hin, R. Mitlohner, E. Donath, H. Kiesewetter, H. Möhwald, H. Baumler, Permeation of Macromolecules into Polyelectrolyte Microcapsules, Biomacromolecules, 3, 517(2002) ﹝21﹞ A. Voigt, H. Lichtenfeld, G.B. Sukhorukov, H. Zastrow, E. Donath, H. Baumler, H. Möhwald, Membrane Filtration for Microencapsulation and Microcapsules Fabrication by Layer-by-Layer Polyelectrolyte Adsorption, Ind. Eng. Chem. Res., 38, 4037(1999) ﹝22﹞ S. Moya, L. Dahne, A. Voigt, E. Donath, H. Möhwald, Polyelectrolyte multilayer capsules templated on biological cells: core oxidation influences layer chemistry , Colloids Surf. A., 183, 27(2001) ﹝23﹞ H. Ai, M. Fang, M.A. Jones, Y. Lvov, Electrostatic Layer-by-Layer Nanoassembly on Biological Microtemplates: Platelets, Biomacromolecules, 3, 560(2002) ﹝24﹞ A.A. Antipov, G.B. Sukhorukov, S. Leporatti, I.L. Radtchenko, E. Donath and H. Möhwald, Polyelectrolyte multilayer capsule permeability control., Colloids Surf. A. , 198, 535(2002) ﹝25﹞ D.B. Shenoy, A. A. Antipov, G..B. Sukhorukov and H. Möhwald, Layer-by-Layer Engineering of Biocompatible, Decomposable Core-Shell Structures, Biomacromolecules , 4, 265(2003) ﹝26﹞ G. Berth, A. Voigt, H. Dautzenberg, E. Donath and H. Möhwald, Polyelectrolyte Complexes and Layer-by-Layer Capsules from Chitosan/Chitosan Sulfate, Biomacromolecules , 3 , 579(2002) ﹝27﹞ O.P. Tiourina and G.B. Sukhorukov, Multilayer alginate/protamine microsized capsules: encapsulation of -chymotrypsin and controlled release study, Int. J. Pharm. , 242, 155(2002) ﹝28﹞ F. Caruso, H. Lichtenfeld, M. Giersig and H. Möhwald, Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles, J. Am. Chem. Soc., 120, 8523(1998) ﹝29﹞ F. Caruso, M. Spasova, A. Susha, M. Giersig and R.A. Caruso, Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach, Chem. Mater. 13 ,109. (2001) ﹝30﹞ F. Caruso, A.S. Susha, M. Giersig and H. Möhwald, Magnetic Core-Shell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres, Adv. Mater. , 11, 950 (1999) ﹝31﹞ F.Caruso, Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles. J. Am. Chem. Soc.,120, 8523(1998) ﹝32﹞ Y.B. Zhang, X.F. Qian, H.A. Xi, J. Yin, Z.K. Zhu, Preparation of polystyrene core–mesoporous silica nanoparticles shell composite, Materials Letters, 58, 222 (2003) ﹝33﹞ 宋明恩,多價鹽類於聚電解質溶液中的影響,國立中央大學化學工程與材料工程研究所碩士論文(2006) ﹝34﹞ P. Mulvaney, L.M. Liz-Marza´n, M. Giersig, T.J. Ung, Silica encapsulation of quantum dots and metal clusters, Mater. Chem., 10, 1259(2000) ﹝35﹞ P.F. Kiser, G. Wilson, D. Needham, A. Synthetic Mimetic of the Secretory Granule, Nature, 394, 459(1998) ﹝36﹞ 王惠君,以回應曲面法探討溶膠凝膠法製備奈米二氧化矽之參數影響,中原大學化學工程學系碩士論文(2004) ﹝37﹞ Bingyun Sun, Sarah A. Mutch, Robert M. Lorenz, Daniel T. Chiu, Layered Polyelectrolyte-Silica Coating for Nanocapsules, Langmuir, 21, 10763(2005) ﹝38﹞ T.Y. Chen, P. Somasundaran, Preparation of novel core-shell nanocomposite particles by controlled polymer bridging, J. Am. Ceram. Soc., 81, 140 (1998) ﹝39﹞ P. Löbmann, H. Strohm, Liquid-Phase Deposition of TiO2 on Polystyrene Latex Particles Functionalized by the Adsorption of Polyelectrolytes, Chem.Mater., 17, 6772(2005) ﹝40﹞ C.H.M. Hofman-Caris, Polymers at the surface of oxide nanoparticles, New J. Chem., 18, 1087(1994) ﹝41﹞ R. Davies, G.A. Schurr, P. Meenan, R.D. Nelson, H.E. Bergna, C.A.S. Brevett, R.H. Goldbaum, Research News Engineered Particle Surfaces, Adv. Mater., 10, 1264(1998) ﹝42﹞ D.V. Goia, E. Matijevic, Preparation of Monodispersed Metal. Particles, New J. Chem., 22, 1203(1998) ﹝43﹞ L. M. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of Nanosized Gold-Silica Core-Shell Particles, Langmuir 1996, 12, 4329. ﹝44﹞ S. M. Marinakos, D. A. Shultz, D. L. Feldheim, Gold Nanoparticles as Templates for the Synthesis of Hollow Nanometer-Sized Conductive Polymer Capsules, Adv. Mater.,11, 34(1999) ﹝45﹞ S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas, Nanoengineering of optical resonances, Chem. Phys. Lett., 288, 243(1998) ﹝46﹞ F. Caruso, Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes, Adv. Mater., 13, 11(2001) ﹝47﹞ F. Caruso, C. Schüler, D.G. Kurth, Core-shell particles and hollow shells containing metallo-supramolecular components, Chem. Mater., 11, 3394(1999) ﹝48﹞ A. Voigt, H. Lichtenfeld, G.B. Sukhorukov, H. Zastrow, E. Donath, H. Baümler, H. Möhwald, Membrane Filtration for Microencapsulation and Microcapsules Fabrication by Layer-by-Layer Polyelectrolyte Adsorption, Ind. Eng. Chem. Res., 38, 4037(1999) ﹝49﹞ (a) F. Caruso, R. A. Caruso, H. Möhwald, Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating, Science , 282,1111(1998) (b) F. Caruso, R. A. Caruso, H. Möhwald, Production of Hollow Microspheres from Nanostructured Composite Particles, Chem. Mater., 11, 3309(1999) ﹝50﹞ K.H. Rhodes, S.A. Davis, F. Caruso, B. Zhang, S. Mann, Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core-Shell Building Blocks, Chem. Mater., 12, 2832(2000) ﹝51﹞ F. Caruso, Hollow Capsule Processing. through. Colloidal. Templating. and. Self-Assembly, Chem. Eur. J., 6, 413(2000) ﹝52﹞ R. A. Caruso, A. Susha, F. Caruso, Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres, Chem Mater, 13, 400(2001) ﹝53﹞ Zhijian Liang, Andrei Susha, Frank Caruso, Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof, Chem. Mater, 15, 3176(2003) ﹝54﹞ Mi-Kyoung Park, Ken Onishi, Jason Locklin, Frank Caruso, Rigoberto C. Advincula, Self-Assembly and Characterization of Polyaniline and Sulfonated Polystyrene Multilayer-Coated Colloidal Particles and Hollow Shells, Langmuir, 19, 8550(2003) ﹝55﹞ Xian-Zheng Zhang, Xiao-Ding Xu, Si-Xue Cheng and Ren-Xi Zhuo, Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels, Soft. Matter, 4, 385(2008) ﹝56﹞ 張學曾,感溫型高分子之性質與其在藥物釋放之應用,研院生醫中心仿生材料工程技術部(2003) ﹝57﹞ K. Kamath, K. Park, Biodegradable hydrogels in drug delivery, Adv. Drug Deliv. Rev, 11, 59(1993) ﹝58﹞ M. Heskins, J.E. Guillet, Solution properties of poly(N-isopropylacrylamide), J. Macromol Sci. Chem. A.., 2, 1441(1968) ﹝59﹞ H.G. Schild, Poly(N-isopropylacrylamide): experiment, theory and application, Prog Polym Sci. ,17, 163(1992) ﹝60﹞ C Wu., X. Wang, Globule-to-Coil Transition of a Single Homopolymer Chain in Solution, Phys Rev Lett, 80, 4092(1998) ﹝61﹞ T. Hellweg, C.D.Dewhurst, W.Eimer, K. Kratz, PNIPAM-co-polystyrene Core-Shell Microgels: Structure, Swelling Behavior, and Crystallization, Langmuir , 20, 4330(2004) ﹝62﹞ C.D. Jones, L.A. Lyon, Dependence of Shell Thickness on Core Compression in Acrylic Acid Modified Poly(N-isopropylacrylamide) Core/Shell Microgels, Langmuir 19, 4544(2003) ﹝63﹞ N. Dingenouts, S Seelenmeyer., I.Deike, S. Rosenfeldt, M. Ballauff, P. Lindner, Analysis of thermosensitive core-shell colloids by small-angle neutron scattering including contrast variation, Phys. Chem. Chemical Physics , 3, 1169(2001). ﹝64﹞ Y. Qiu, K. Park, Environment-sensitive. hydrogels for drug delivery, Adv. Drug Del. Rev., 53, 321.(2001) ﹝65﹞ H.G. Schild, A review with 309 refs. on synthesis, crosslinking, solution properties, modification, and uses of poly(N-isopropylacrylamide). Prog. Polym. Sci, 17, 163(1992) ﹝66﹞ S.J. Lee , K. Park, J.Mol, Synthesis and characterization of sol-gel phase-reversible hydrogels sensitive to glucose, Recognit, 9, 549(1996) ﹝67﹞ A. Mamada, T. Tanaka, D. Kungwachakun, M. Irie, Photoinduced Phase Transition of Gels, Macromolecules, 23, 1517(1990) ﹝68﹞ A. Suzuki , T. Tanaka, Phase transition in polymer gels. induced by visible light, Nature, 346, 345(1990) ﹝69﹞ S.G. Starodoubtsev, A.R. Khoklov, E.L. Sokolov, B. Chu, Evidence for PolyelectrolyteLtonomer Behavior in the Collapse of Polycationic Gels Macromolecules, 28, 3930(1995) ﹝70﹞ I. Dimitrov, B. Trzebicka, Axel H.E. Müller, A. Dworak,C.B. Tsvetanov, Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities, Prog. Polym. Sci., 10, 1016(2007) ﹝71﹞ T. Takezawa, Y. Mori, K.Yoshizato, Cell culture on a thermo-responsive polymer surface, Biotechnology, 8, 854(1990) ﹝72﹞ Fujishige S, Kubota K, Ando I, Single-chain transition of poly(N-isopropylacrylamide) in water, J. Phys Chem., 93, 3311(1989) ﹝73﹞ V. E., and Ptitsyn, O. B., "Domain" Coil-Globule Transition in Homopolymers, Macromolecules, 28, 7519 (1995). ﹝74﹞ H.G. Schild, A review with 309 refs. on synthesis, crosslinking, solution properties, modification, and uses of poly(N-isopropylacrylamide), Prog. Polym. Sci, 17, 163(1992) ﹝75﹞ H.G. Schild, D.A.Tirrell, Interaction of poly(N-isopropyla-crylamide) with sodium n-alkyl sulfates in aqueous solu-tion, Langmuir, 7, 665(1991) ﹝76﹞ 張侃,張黎明,環境敏感水凝膠的研究進展,廣州化學,第26卷,第4期(2001) ﹝77﹞ R.H. Pelton, P. Chibant, Preparation of Aqueous Latices with N- Isopropylacrylamide, Colloids and Surfaces, 20, 247(1986) ﹝78﹞ X.C. Xiao, L.Y. Chu, W.M. Chen, S. Wang, R. Xie, Preparation of submicrometer-sized monodispersed thermoresponsive core-shell hydrogel microspheres, Langmuir, 20, 5247(2004) ﹝79﹞ K. Zhang, J. Ma, B. Zhang, Y. Li, Y. Xu, W. Yu, J. Wang, Synthesis of thermoresponsive silica nanoparticle/PNIPAM hybrids by aqueous surface-initiated atom transfer radical polymerization, Materials Letters, 61, 946(2007) ﹝80﹞ J. Liu, R. Pelton, A. Hrymark, Properties of Poly(N-isopropylacrylamide) -Grafted Colloidal Silica, Jourmal of Colloidand Interface Science, 227, 408(2000) ﹝81﹞ M Das, S ardyani, W.C.W. Chan, E Kumacheva, Techniques of Controlled Drug Release, Adv. Mater., 18, 80(2006) ﹝82﹞ 鄭巧東,藥物控制釋放研究及應用,浙江化工,34,5(2005) ﹝83﹞ K.G. Das, Controlled Release Techlogy, Bioengineering Aspects, John Wiley&Sons(1983) ﹝84﹞ 徐銅文,何炳林,擴散膜控制技術進展,世界科技研究與發展(2000) ﹝85﹞ Ze Lu,Shenguo Wang, Polymeric Microencapsulated Drug Del ivery System, Journal of Functional Polymers, 10, 3(1997) ﹝86﹞ R Dusan, K.R. Branka, The effects of irradiation on controlled drug delivery/controlled drug release systems, Radiation Physics and Chemistry, 77, 288(2008) ﹝87﹞ 田威,范曉東,藥物控制釋放用高分子載體的研究進展,高分子材料科 學與工程(2006) ﹝88﹞ B. Liu, J. Hu, FIBRES&TEXTILES in Eastem Europe, 13, 54(2005) ﹝89﹞ J. Gu, F. Xia, Y. Wu, X. Qu, Z. Yang, J. Lei, Programmable delivery of hydrophilic drug using dually responsive hydrogel cages, Journal of Controlled Release, 117, 396(2007) ﹝90﹞ H. Gao, W. Yang, K. Min, L. Zha, C. Wang, S. Fu, Thermosensitive poly(N-isopropylacrylamide) nanocapsules with controlled permeability, Polymer, 46, 1087(2005) ﹝91﹞ Y. Liu, H. Miyoshi, M. Nakamura, Novel drug delivery system of hollow mesoporous silica nanocapsules with thin shell:Preparation and fluorescein isothiocyanate(FITC) release kinetics, Colloids and Surfaces B: Biointerfaces, 58, 180(2007) ﹝92﹞ B. Taşdelen, N. Kayaman-Apohan,O. Güven, B.M. Baysal, Anticancer drug release from poly(N-isopropylacylamide/itaconic acid) copolymer hydrogels, Radiation Physic and Chemistry, 73, 340 (2005) ﹝93﹞ W. Z. Yuan, M. Peng, Q. M. Yu, B. Z. Tang, Q. Zheng, Preparation of Core-Shell Poly(acrylic acid)/Polystyrene/SiO2 Hybrid Microspheres, Chem. Res. Chinese U., 22, 797(2006) ﹝94﹞ 鐘美竹,多孔性明膠-幾丁聚醣/奈米二氧化矽複合支架材料製備與特性研究,中興大學材料工程研究所碩士論文(2006)
摘要: 
本研究主要目的是製備奈米級中空型且具可溫變功能性之生物相容性藥物載體。實驗是將經過聚電解質改質的聚苯乙烯球,以層接層方式披覆奈米級二氧化矽前驅物,形成PS/SiO2核殼結構奈米複合顆粒,此顆粒再經四氫夫喃侵蝕,而製備出中空二氧化矽殼球。最後將溫度敏感型高分子接枝於複合顆粒表面。
由FTIR、SEM和TEM結果顯示,已成功製備 ~110nm中空SiO2殼球及中空溫度敏感型複合顆粒。從化學分析能譜結果,證實添加1、2和4g NIPAM單體量,顆粒載體表面皆有PNIPAM的存在,且隨著NIPAM單體量增加,接枝於顆粒表面之PNIPAM含量亦增加,同時由電子顯微鏡觀察顆粒粒徑大小,亦可獲得粒徑隨單體添加量增加而增大之結果。
經動態光散射儀和微差掃描熱分析儀結果,顯示添加不同NIPAM單體量對LCST並無明顯的差異,所獲得之LCST約在33~36℃,此溫度範圍接近人體體溫,適合作為藥物載體用。而本研究中,除了探討改變單體添加量,所製備藥物載體材料特性之外,主要將進一步提出其藥物釋放模式。
從模擬藥物吸附與釋放結果,顯示低溫吸附量會大於高溫,而低溫釋放率亦會較高溫增加。然而,實驗中以表面披覆少量PNIPAM之載體顆粒,於低溫獲得最佳釋放率 ~ 86 %,從結果指出,PNIPAM 受溫度變化引發結構型態改變,而使顆粒載體於低溫吸附量大於高溫之結果。且顆粒外層披覆PNIPAM 含量會影響藥物擴散行徑,造成藥物吸附速率之差異,並且在釋放試驗亦是獲得相同結果。由此可知,製備的顆粒載體可經由溫度控制,使藥物按設計劑量與選擇適合的藥物釋放模式,以達到治療某種疾病之目的。

This study is focused on the preparation of hollow silica nanoparticle containing the thermosensitive and biocompartible function used as drug carriers.
The hollow silica nanoparticles have been prepared using layer-by-layer technique to coat the polyelectrolyte on the surface of about 100 nm polystyrene latex and SiO2 precursor was reacted with the polyelectrolyte on the surface of PS latex. The fabricated SiO2 coated PS particle was immersed into THF to remove the PS core and then the thermoresponsive polymer, poly(N-isopropylacrylamide)(PNIPAM) was grafted on the surface of hollow nanoparticle using free radical polymerization.
The morphology and physical properties of the synthesized nanoparticles were analyzed by SEM, TEM, FT-IR, XPS, DLS and DSC. Form the results of FTIR, SEM and TEM images, the ~110 nm hollow SiO2 nanoparticle with thermosensitive PNIPAM was successfully prepared. The presence of PNIPAM on the surface of SiO2 nanoparticle was further identified by XPS analysis. The rate of grafted PNIPAM increases with increasing the content of NIPAM monomer. Both DLS and DSC results show the LCSTs detected at 33~36℃ close to human temperature do not change as the NIPAM dosages increases.
The fabricated nanoparticles with thermosensitive and biocompatible function used as drug carrier was further characteristized their drug release behavior at different temperature. The result show that the drug loading and releasing rate were fast at lower temperature. The maximum releasing rate is about 86% for the specimens containing lower content of PNIPAM. Therefore, the fabricated hollow nanoparticle designed as a novel model for drug carrier can be controlled the on-off releasing rate via changing external temperature.
URI: http://hdl.handle.net/11455/10210
其他識別: U0005-1708200610343300
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.