Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10211
標題: The study of corrosion mechanism on the ladle porous plug
盛鋼桶攪拌磚侵蝕機制之研究
作者: Shen, Yu-Pin
沈郁斌
關鍵字: porous plug;攪拌原件;aluminum-magnesium spinel;aluminium calcium silicate;鋁鎂尖晶石;鋁矽酸鈣
出版社: 材料科學與工程學系所
引用: 1. D.Schroeder, “Use of energies in electric furnace steel making shops. ”New York,PP.100-120,1990. 2. M.A. Orehoski and R.D.Gray, “ Ladle Refining Processes, Iron and Steel Engineering, ” January, 1986,PP.50-70. 3. J. Wiley, Electric Furnace Steel Production, Wiley, New York, PP.210-230 ,1985. 4. P.E. Anagbo , and K. Brimacombe, “ Plume characteristics and liquidcirculation in gas injection porous plug, ” Metall. Trans. B 21B,PP. 637–648 , 1990. 5. H. E. Kobus, “ Analysis of the-owinduced by air-bubble system ” ,in: Proc. Coastal Eng. Conf. London, ch. 65, vol.2, PP. 1016-1031, 1968. 6. K. Cederwall and J. D. Ditmars , “Analysis of air-bubble plumes ”, Report KH -R-24, California Institute of Technology,Pasadena, CA, 1970. 7. T.Gladman “ Developments in inclusions and their effect on steel properties ”, Ironmaking and Steelmaking, vol.19, PP.457-463,1992. 8. I. Brevik, and R. Killie, “Phenomenological description of theaxisymmetric air-bubble plume ”, Int. J. Multiphase vol.22 , PP..535-549,1996. 9. J.H. Grevet, J. Szekely, and N. El-Kaddah, “An experimental andtheoretical study of gas bubble driven circulation systems”, Int. J. Heat Mass Transfer vol.25, PP. 487-497,1982. 10. D. Balaji and D. Mazumdar, “Numerical computation of flowphenomenain gas-stirred ladle systems”, Steel Res. vol. 62 , PP. 16-23, 1991. 11. T. Aoki , “ Elimination of the Back – Attack Phenomenon on a BottomBlowing Tuyere Investigated in Model”, Vol.76,pp.240-246,1990 . 12. JF Domgin, P Gardin and M Brunet, “ Experimenta land numerical investigation of gas stirred ladles”, 2nd Int.Conf. On CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, Dec, PP.181–186,1999 . 13. Sune Jansson , Voicu Brabie , and Par Jonsson,“Corrosion mechanism and kinetic behaviour of MgO–C refractory material in contact with CaO–Al2O3–SiO2–MgO slag”, Scandinavian Journal of Metallurgy, Vol.34, PP.283-292, 2008 14. T Ouchi, “Wear and countermeasures of Porous Plugs for Ladle”, J. of Technical Association of Refractories, Japan, Vol.21 , PP.270-275 2001. 15. H. Naaby, O. Abildgarrd, G. Stallmann, C. Wohrmeyer, and J. Meidell, “Refractory wear mechanism and influence on metallurgy and steel quality as a result of the conversion to endless lining at Det Danske Stalvalseark” in: Stahl und Eisen Special XXXVII Int. Coll, Oct, 1994,PP.1–8. 16. N.SUTCLIFFE, “ Slag / refractory and metal / refractory interactions during the production of stainless steels. ” Internationa Conferenceon Molten Slags Fluxes and Salts, The South AfricanInstitute ofMining and Metallurgy, 2004. 17. A.H,Christensen, “Neutron powder diffraction profile refinementstudies on Ca11.3Al14O32.3 and CaC10(D0.88H0.12)Journal ofSolid State Chemistry, 1984. 18. RIAZ,S.CEDERLUND-LOSENBORG,A.MILLS,K.C,andBAIN,K“Characterisation and entrapment of ladle glazes in the molten steel“.6th International Conference on Molten Slags, Fluxes and Salts,Stockholm and Helsinki. June 2000. 19. 欒心漢、孫湘,鋼鐵冶金學,西安建築科技大學第32-33頁,1994年. 20. S. Zhang, N. j. Marriot, and W. E. Lee,“Thermochemistry and microstructure of MgO-C refractories containg various antioxidants,” Journal of European Ceramic Society, Vol.21, PP. 1037-1047, 2001. 21. A.S. Gokce, C. Gurcan, S. Ozgen, and S. Aydin, “The effect of antioxidants on the oxidation behaviour of magnesia–carbon refractory bricks,” Ceramics International, Vol.34 , PP.323-330, 2008. 22. Li Rongti, Pan Wei, Masamichi Sano, and Jianqiang Li,“Kinetics of reduction of magnesia with carbon,” Thermochemica Acta, Vol.390, PP. 145-151, 2002. 23. Wang Zhigang , Li Nan , and Kong Jianyi , “Researcon Thermomechanical Stress of Long Nozzle and ImprovementMeasures. ”Refractories Applications and News , Vol. 10, PP.13-17, 2005. 24. Poirier J , Gasse A and Boisse P. “Thermo mechanical Modelling of SteelLadle Refractory Structures.”International Ceramics,Vol. 54,PP.182-188 ,2005. 25. J. Schoennahl and C. Naturel. “Bouchons pourex pour metallurgie en poche unenouvelle generation”elements a porosite orientee. Revue de Metallurgie – CIT, Julio PP. 545 – 549 , 1987. 26. B. Grabner and H. Hoffgen. “ Application and wear of porous plugs in secondary metallurgy. ” Radex-Rundschau, Vol. 3, PP. 581– 610 , 1985. 27. Mathias J D and TessierDoyen N. “Homogenization of Glass/Alu mina Two phase Materials Using a Cohesive Zone Model”Computational MaterialsScience , Vol. 43 PP. 1081-21085 , 2008. 28. Joliff Y, Absi J ,and Glandus J C , “Experimenta and Numerical Study of the Thermo mechanical Behaviour of Refractory Model Materials”. Journal of the European Ceramic Society , Vol. 27 PP.1513-1520 , 2007. 29. Sands C M , Henderson R J ,and Chandler H W. “A ThreeDimensional omputational Model of the Mechanical Response of aDu alphase Ceramic”. Computational Materials Science , Vol. 39 PP.862-870 , 2007. 30. Lachman IM,Baley R D, and Lewis R M. “Thermal expansion ofextruded cordierite ceramic.” American Ceramic Bulletin, Vol. 60 PP, 202 -206, 1981. 31. Saha B P, Johnson Roy,and Ganesh I, “Thermal anisotrop ic in sintered cordierite monolishs.” Materials Chemistry and Physics, Vol. 7 PP.140 -155, 2001. 32. Goto,K., Argent,B. and Lee,W.E., “Corrosion of MgO-MgAl2O4spinel refractory bricks by calcium–alumina–silica slags. ”Journal of the American Ceramic Society, Vol.80, PP.461, 1997. 33. Li, X. M., Rigaud, M. and Palco, S., “Oxidation kinetics of graphitephase in magnesia-carbon refractories. ” Journal of the merican Ceramic Society, Vol. 78,PP. 965–97, 1995. 34. Masae Nakahara, Yutaka Hashizuka, and Yoshihito Komdo, “Behavior of talc in formation of cordierite ceramics.” J Ceram Soc Jap, Vol. 102 PP.18 - 22, 1994. 35. Lee W E and Zhang S. “ Melt corrosion of oxide and oxide carbonrefractories. ” International Materials Reviews , Vol. 44 PP.77-104 ,1999. 36. 劉承軍、朱英雄、姜茂發.〝高速連鑄保護渣的黏性特徵〞.鋼鐵研究,第13-17頁,2000年。 37. M. Siadati, A. Monshi, E. Karamian, S. Alikhani, and A. Salehian,“Hot Corrosion of Slag Line in Plaster of Tundish in Continuous Casting of Steel”,. International Journal of ISSI, Vol. 5, No. 2, pp. 36-44, 2008. 38. 餘樹楨,晶體之結構與性質,國立編譯館,民國 85 年 11 月. 39. L. Navias, “Preperation and properties of spinel made by vapor transport and diffusion in the system MgO-Al2O3 ” , Journal of the American Ceramic Society PP.34 -44, 1961. 40. H. Sieber, D. Hesse, X. pan, St. Senz and J. Heydenreich, “TEMinvestigations of spinel-forming solid state reactions: reaction mechanism, film orientation, and interface structure durning MgAl2O4 formation on MgO (001) and Al 2 O3 (112) single crystal substrates” , Zeitchrift fur anorganishe und allgemeine Chemie PP. 62- 65, 1996. 41. C. J. Ting and H. Y. Lu,“Defect reactions and the controlling mechanism in the sintering of magnesium aluminate spinel”, Journal of theAmerican Ceramic Society PP. 82-84, 1999. 42. P. Kumar and K. H. Sandhage, “The fabrication of near net-shapedspinel bodies by the oxidative transformation of Mg/Al 2 O 3 precursors” ,Journal of Materials Research PP.13-23, 1998. 43. E. B. Watson and J. D. Price, “Kinetics of the reaction MgO + Al 2O 3 → MgAl 2 O4 and Al - Mg interdiffusion in spinel at 1200 to 2000 and 1.0 to 4.0 ℃GPa” , Geochimica et Cosmochimmica Acta Vol. 66 ,PP.2123-2138, 2002. 44. JF Domgin , P Gardin and M Brunet , “ Experimental and numerical investigation of gas stirred ladles”, 2nd Int. Conf. On CFD in the Minerals and Process Industries CSIRO,Melbourne, Australia,Dec,PP.181–186,1999. 45. Takano, I., Shikano, H., Furusato, I., Takita, I. and Furuta, K., “Effect of spinel raw material on corrosion resistance for steel ladle catable. ”Taikabutsu, Vol. 43, PP.187–192, 1991. 46. S Taniguchi, S Kawaguchi and A Kikuchi, “Fluid flow and gas-liquid mass transfer in gas-injected vessel”, 2nd Int. Conf. On CFD in theMinerals and Process Industries CSIRO, Melbourne, Australia, Dec,PP.193–197, 1999. 47. T Ouchi, “Wear and countermeasures of Porous Plugs for Ladl”, J. of Technical Association of Refractories, Japan, Vol.21,pp270-275,2001. 48. T Matsushita and T Ouchi , “Direct observation of molten steel penetration into porous refractory”, J. of Technical Association of Refractories, Japan , PP.15–19 ,2003. 49. Nagai, B., Matsumoto, O., Isobe, T. and Nishiumi, Y., “Wea mechanism of castable for steel ladle by slag. ” Taikabutsu, Vol.42,15–20 ,1990. 50. Kobayashi, M., Kataoka, K., Sakamoto, Y. and Kifune, I.,“Improvement of alumina-magnesia castable for steel ladlewall. ”Taikabutsu, Vol. P.74–80, 149,P 997. 51. Chan, C. F. and Ko, Y. C., “Effect of CaO content on the hot strength of alumina-spinel castables in the temperature range of 1000–150℃. ” J. Am. Ceram. Soc, Vol.81, PP.2957–2960, 1998.
摘要: 
本研究利用精煉爐將攪拌原件安裝在盛鋼桶內進行攪拌作業,待攪拌原件使用下線後再從盛鋼桶內取出進行實驗分析。首先利用掃瞄式電子顯微鏡觀察試片表面結構,由影像中得知鋁鎂尖晶石的形成、功能及鋼水的滲入路徑,再使用EDS分析試片表面,最後以使用XRD檢測確認成份。
實驗中使用掃瞄式電子顯微鏡所附設之背向散射電子影像成像觀察並配合EDS進行成份分析,發現攪拌原件被侵蝕的主因是鋼水中Fe元素滲入的影響,實驗中由Fe元素滲入層可得知鋼水進入攪拌原件內部,遇到堅硬且緻密的鋁鎂尖晶石阻擋滲入的路徑,在鋁鎂尖晶石內可觀察到白色小條紋及小晶粒分出現,由EDS分析後得知這兩點的位置內有Al、Ca、Si等元素,經原子百分比計算得知鋁矽酸鈣,由CaO- Al 2O3 - SiO2 系三相圖中可看出鋁矽酸鈣熔點為:1400℃,而這三種氧化物為攪拌原件中鋁相氧化物和攪拌磚表面經氧氣清洗後,殘鋼中的Ca及Si元素產生氧化鈣及氧化矽互相反應產生鋁矽酸鈣低熔點相化合物,由於攪拌原件因長時間在1600℃~1700℃間的鋼水作業必會將攪拌原件中的鋁矽酸鈣融入鋼水中,使得鋼水中Fe元素能沿著鋁矽酸鈣所留下的微裂紋滲入到攪拌原件晶粒內部,降低了攪拌原件顆粒間的結合力,當攪拌原件內部所生成的低熔點化合物過多時,攪拌原件表面的顆粒會因結構疏鬆崩落於鋼水中,使攪拌原件的侵蝕加速。
由整個實驗結果得知,鋁相與鎂相氧化物在高溫鋼水作用下產生鋁鎂尖晶石,同時伴隨著體積膨脹;反應後的尖晶石阻止了鋼水中Fe元素向原件內的擴散,但在氧氣清洗反應中的殘留元素CaO、SiO與攪拌原件中的Al2O3元素產生低熔點化合物,使原件組織結構疏鬆滲入層會因鋼水沖刷作用而崩落於鋼水中。當攪拌原件重複形成滲入層也因結構疏鬆持續崩落,則攪拌原件會因循環使用產生消耗直到下線更換。

In this study, refining furnace will be installed in the ladle porous plug to stir within the operations to be porous plug from the ladle to use come down and then taken out for experimental analysis. First, the use of scanning electron microscopy the surface structure of the specimen from the image that spinel formation, function and molten steel into the path, then use the EDS analysis of the specimen surface, and finally to confirm the ingredients using XRD.
The images were observed using the SEM-BEI, mixing the porous plug is the main cause of erosion by the molten steel into the effects of Fe in the experiment by the Fe layer that fills the air element into the state of steel phase into the mixing inside, the encounter hard and dense state of spinel block fills the air down to the path in the spinel. It can be observed within the white stripes and small grain points emerged from the EDS analysis that the location of these two points within the Al, Ca, Si and other elements, the atomic percentage of that CAS2 (aluminum calcium silicate). The CaO-Al2O3-SiO2 system of phase diagram of aluminum calcium silicate indicated that the melting point was 1400℃, and mixing these three components in the aluminum oxide phase of porous plug surface after oxygen cleaned, and molten silicon phase and each phase reaction of aluminum oxide calcium silicate compounds with low melting point, because stirring originals work for a long time between 1600℃ and 1700℃, the aluminum calcium silicate flows into the molten steel, makes the molten steel of Fe can be left along the aluminum calcium silicate micro-cracks into the grain interior to the porous plug, porous plug reduced the binding force between the particles, when the porous plug of low-melting compounds generated inside were too much, the porous plug surface of the particles loose caving in due to structural steel lead to mixing of the porous plug erosion.
That results from the aluminum phase and molten steel at high temperature magnesium oxide phase under the action of spinel, accompanied by volume expansion; reaction of spinel and Fe in molten steel to prevent the spread within the porous plug. However, the sintering reaction at high temperature molten steel in the CaO, SiO, and other elements and mixing elements of the porous plug produced in low-melting compounds of Al2O3 so that the porous plug structure of the original layer of loose into the role of erosion because of molten steel in the molten steel in caving. When the porous plug layer is repeated to form into caving due to loose structure continued, the porous plug produce consumption due to recycling off the assembly line until replaced.
URI: http://hdl.handle.net/11455/10211
其他識別: U0005-1908201109590000
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.