Please use this identifier to cite or link to this item:
標題: 高散熱發光二極體構裝設計與實作研究
Design and Fabrication of Light Emitting Diode Packaging with High Thermal Dissipation
作者: Yun, Hsiao Hsiang
關鍵字: GaN;氮化鎵;LED;self-aligment lithography;metal electroplating;reflective heat spreader;發光二極體;自我對準;電鍍技術;散熱基座
出版社: 材料科學與工程學系所
引用: [1] 蔡幸甫, 散熱模組產業現況與發展趨勢, 工業材料雜誌247期, pp.114-117, 2007. [2] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High Efficiency InGaAlP/GaAs Visible Light Emitting Diodes,” App. Phys. Lett., vol. 58, 1010, 1991. [3] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High Brightness InGaAlP Green Light Emitting Diodes,” App. Phys. Lett., vol. 61, 1752, 1992. [4] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, “High Brightness AlGaInP Light Emitting Diodes,” IEEE., vol. 85, 1752, 1997. [5] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light Emitting Diodes,” Jpn. J. Appl. Phys., vol. 34, 1332, 1995. [6] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Very High Efficiency Semiconductor Wafer Bonded Transparent Substrate (AlxGa1–x)0.5In0.5P/GaP Light Emitting Diodes, ” Appl. Phys. Lett., vol. 64, 2839, 1994. [7] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, “High Reliable and Efficient Semiconductor Wafer Bonded AlGaInP/GaP Light Emitting Diodes,” Electron. Lett., vol. 32, 132 , 1996. [8] S. Yoshida, S. Misawa, and S. Gonda, “Epitaxial Growth of GaN/AlN Heterostructures,” Journal of Vacuum Science & Technology B., vol. 1, 250, 1982. [9] M. Hao, T. Sugahara, H. Sato, Y. Morishima, Y. Naoi, L. T. Romano, and S. Sakai, “Study of Threading Dislocations in Wurtzite GaN Films Grown on Sapphire by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 37, 291 , 1998. [10] E. Kuokstis, C. Q. Chen, J. W. Yang, M. Shatalov, M.E. Gaevski, V. Adivarahan, and M. A. Khan, “Room Temperature Optically Pumped Laser Emission from a-plane GaN with High Optical Gain Characteristics,” Appl. Phys. Lett., vol. 84, 2998, 2004. [11] A. Zukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid-State Lighting,” New York: Wiley and Sons Press, pp. 12-15, 2002. [12] S. Nakamura, and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” Berlin: Springer Press, pp. 10-22, 2000. [13] S. Nakamura, and S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitter Diodes,” London:Taylor and Francis Press, pp. 45-47, 2000. [14] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Khan, and M.S.Shur, ‘‘High Temperature Performance of AlGaN/GaN HFETs on SiC Substrates,’’ IEEE Electron Device Lett., vol. 18, 492, 1997. [15] Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, ‘‘AlGaN/GaN Quantum Well Ultraviolet Light Emitting Diodes,’’ Appl. Phys. Lett., vol. 73, 1688, 1998. [16] 姚柏宏, LED光源模組發展現狀與機會, 工業材料雜誌221期, pp. 87-92, 2005. [17] 王興龍, 軟性顯示器之現況與未來發展, 工業材料雜誌222期, pp. 127-134, 2005. [18] W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C. E. Lee, W. K Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang, and R. H. Horng, “High Power GaN Mirror Cu Light-Emitting Diodes for Vertical Current Injection Using Laser Liftoff and Electroplating Techniques,” IEEE Photo. Technol. Lett., vol. 17, 1809, 2005. [19] W. S. Wong, T. Sands, N. W. Cheung, M. Keissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of Thin Film InGaN Light Emitting Diode Membranes by Laser Lift Off,” Appl. Phys. Lett., vol. 75, 1360 , 1999. [20] W. S. Wong, T. Sand, N. W. Cheung, M. Keissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “InxGa1–xN Llight Emitting Diodes on Si Substrates Fabricated by Pd–In Metal Bonding and Laser Life Off,” Appl. Phys. Lett, vol. 77, 2822, 2000. [21] [22] 史光國, 半導體發光二極體及固態照明, 全華科技, pp. 2.1-2.4, 2005. [23] R. McCluney, “Introduction to Radiometry and Photometry,” Orlando:Artech House Press, pp 138-167, 1994. [24] 黃調元, “半導體元件物理與製作技術,” 國立交通大學出版社, pp. 41-77, 2003. [25] Y. Xi and E. F. Schubert, “Junction Temperature Measurement in GaN Ultraviolet Light Emitting Diodes Using Diode forward Voltage Method,” Appl. Phys. Lett. vol. 85, 2163, 2004. [26] Y. Xi, J. Q. Xi, T. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction and Carrier Temperature Measurements in Deep Ultraviolet Light Emitting Diodes Using Three Different Methods,” Appl. Phys. Lett. vol. 86, 1907, 2005. [27] P. Incropera and P. DeWitt, “Introduction To Heat Transfer 4th,” New York:John Wiley & Sons Press, pp 13-27, 2001. [28] J. P. Holman, “Heat Transfer 8th,” New York: McGraw-Hill Press, pp 1-20, 1997. [29] P. G. Klemens, “Theory of the Thermal Conductivity of Solids,” London: Academic Press, pp. 34-46, 1969. [30] J. Moran and N, Shapiro, “Fundamentals of Engineering Thermodynamics 6th,” New York:John Wiley & Sons Press, pp 110-117, 2004. [31] P. Incropera, P. DeWitt, L. Bergman, S. Lavine, “Fundamentals of Heat and Mass Transfer 4th,” New York:John Wiley & Sons Press, pp 69-79, 1997. [32] [33] A. Su, Y. C. Liu, and C. Y. Chen, “Thermal Diffusion Analysis for LED Module,” Heat Transfer-Asian Research, vol. 36, 449, 2007. [34] [35] Y.-C., Y.-K. Lin, M.-H. Chen, C.-C. Tsai, J.-H. Kuang, S.-B. Huang, H.-L. Hu, Y.-I. Su, and W.-H. Cheng, “ Failure Mechanisms Associated With Lens Shape of High-Power LED Modules in Aging Test,” IEEE Transactions on Electron Devices, vol. 55, 689 , 2008. [36] [37]
本研究使用無光罩自我對準的微影製程和電鍍技術製作出一具有反射鏡面之高散熱銅基座的藍光發光二極體元件。吾人於氮化鎵發光二極體背面電鍍出銅的散熱基座,此基座除了提供散熱並且具有反射光杯提高了側向光之利用率。先利用ANSYS模擬出散熱基座的熱傳特性與最佳化尺寸,再利用TracePro模擬出反射光杯之趨勢,找出最合適之包覆深度、曲率半徑與鏡面材質。製程上,於玻璃基板旋轉塗佈適當厚度光阻,經過軟硬烤後蒸鍍高反射率之反射鏡面Ag/Cr/Au,最後電鍍出3 mm x 3 mm的銅基座,此散熱基座可以有效的將晶粒內部產生的熱量導出,也因為熱量不再繼續累積於內部而提高了整體發光效率與發光強度。量測後發現,藉由高反射鏡面的散熱銅基座輔助,當電流操作在1安培時光強度約為9700 mcd,原始發光二極體約為3100 mcd,兩者相比正向光大約增加2倍的強度。另一方面,當具光杯與銅基座之發光二極體操作電流在1安培其光輸出功率為700 mW,原始發光二極體約為190 mW,兩者相比較輸出功率大約增加了2.7倍。而光電轉換效率在1安培操作下約為16%,原始發光二極體為4%,光電轉換效率約增加2.8倍。並且使用遠紅外線熱像分析儀量測比較原始發光二極體與具有高反射鏡晶的散熱銅基座,在1安培操作下為92.8oC,原始發光二極體為144oC,約降低了32%的熱量。藉由具反射鏡面之高散熱銅基座改善了整體元件發光效率,提供了現有封裝技術的新方向。

Using maskless self-alignment lithography and metal electroplating techniques, we have demonstrated an enhanced performance of lateral-electrodes GaN light emitting diode (LED) with a reflective copper (Cu) heating spreading layer. The ANSYS and TracePro softwares were used to simulate the thermal and optical performance of this novel LED package. The spinning coated photoresist on glass carrier is used as a mold to form the cup-shaped Au/Cr/Ag mirror and Cu heat spreader with a base dimension of 3 mm x 3 mm, which effectively enhance the heat dissipation down to the metal plate and reap the light flux generated. From the side emission. With the aid of reflective Cu heat spreader, the encapsulated LEDs injected into 1 A current yields the intensity of 9700 mcd and around 2 times increase in electric-optical conversion efficiency compared to hat of conventional lateral-electrodes LEDs on sapphire. The light output power of 700 mW and an around 2.7 times. The power efficiency of 16% and an around 2.8 times. The measurements of infrared thermal images confirm a lower temperature and a higher uniformity of the temperature distribution for the devices with the reflective Cu heat spreader, the surface temperature decrease 32% with the aid of reflective Cu heat spreader.
其他識別: U0005-1708200613353500
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.