Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10224
DC FieldValueLanguage
dc.contributor林佳鋒zh_TW
dc.contributor邱明傑zh_TW
dc.contributor.advisor薛富盛zh_TW
dc.contributor.author王永銘zh_TW
dc.contributor.authorWang, Yung-Mingen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:44:33Z-
dc.date.available2014-06-06T06:44:33Z-
dc.identifierU0005-1907200618132200zh_TW
dc.identifier.citation1.吳孟奇、洪勝富、連振炘、龔正,半導體元件,東華書局,第296-334頁,民國90年。 2.羅文雄、蔡榮輝、鄭岫盈,半導體製造技術,台灣培生教育出版,滄海發行,第15-17頁,民國92年。 3.劉傳璽、陳進來,CMOS元件物理與製程合理論與實務,五南圖書出版股份有限公司,第93-281頁,民國92年。 4.施敏,半導體元件物理與製作技術,國立交通大學出版社,第263-332頁,民國92年。 5.中野隆生、赤阪洋一,ULSI DRAM 技術,全華科技圖書股份有限公司,第5-1至5-56頁,民國91年。 6.林鴻志,”深次微米閘極技術之發展與未來趨勢(I)” NDL奈米通訊第五卷第二期,民國87年。 7.李介文,”淺談Negative Bias Temperature Instability(NBTI)” NDL奈米通訊第十三卷第一期,民國95年。 8.J. H. Lee、H. Jae and K. Y. Lim, Low-Temperature Gate Oxynitrides Formed by Radical Oxygen/Nitrogen in a Low-Bias High-Density Plasma, Journal of the Korean Physical Society, Vol.46, No.4, pp.1007-1012, 2005. 9.C. M. Lek, B. J. Cho, C. H. Ang, S. S. Tan, W. Y. Loh, J. H. Hen and C. Lap, Impact of decoupled plasma nitridation of ultra-thin gate oxide on the performance of p-channel MOSFEETs, Semicond. Sci. Technol.17, pp. 25-28, 2002. 10.T. Ohguro, T. Nagano, M. Fujiwara, M. Takayanagi, T. Shimizu, H.S. Momose , S. Nakamura and Y. Toyoshima, 2001 VLSI Technology,2001, Digest of Technical Papers, pp.91, 2001. 11.U. Ogawa, K. Shimeno N. Sato, R. Furukawa, Plasma Oxidation and Nitridaton System for 90- to 65-nm Node Processes, Hitachi Review Vol.52, No.3, pp.163-165, 2003. 12.S. Ozaki, S. Matsuyama, M. Sasaki and T. Nakanishi, An Ultra Thin Nitridede Oxide Gate Dielectric Formation By Using Slot Plane Antenna Plasma, IEEE/SEMI Advanced Manufacturing Conference, pp.137-141, 2003. 13.C. H. Chen, Y. K. Fang, C.W. Yang, S. F. Ting, Y. S. Tsair, M. C. Yu, T. H. Hou, M. F. Wang, S. C. Chen, C. H. Yu. and M. S. Liang, Thermally-Enhanced Remote Plasma Nitrided Ultrathin(1.65nm) Gate Oxide with Excellent Performances in Reduction of Leakage Current and Boron Diffusion, IEEE Electron Device Letters,Vol.22, No.8, pp. 378 -380, 2001. 14.T. Aoyama, K. Suzuki, H. Tashiro, Y. Tada, H. Arimoto, and K. Horiuchi, Flatband Voltage Shift in PMOS Devices Caused by Carrier Activaion in P+-Polycrystalline Silicon and by Boron Penetration, IEEE Transactions on Electron Device, Vol.49, No.3, pp. 473-480, 2002. 15.M. Jurczak, A. Veloso, R. Rooyackers, E. Augendre, S. Mertens, A. Rotschild, M. Scaekers, R. Lindsay, A. Lauwers, K. Henson, S. Severi and I. Pallentier, Challenges in scaling of COMS devices towards 65nm node, Journal of Telecommunications and Information Technology, pp. 3-6, 2005. 16.C. HU and Q. Lu, A Unified Gate Oxide Reliability Model, IEEE 37thAnnual International Reliability Physics Symposium, pp.47-51, 1999. 17.J. S. Suehle , IEEE International Reliability Physics Symposium Proceedings , pp.120, 1994. 18.M. Kimura, IEEE International Reliability Physics Symposium Proceedings, pp. 190, 1997. 19.Eric M. Vogel, Member, IEEE, Da-Wei Heh, Joseph B. Bernstein, Member, IEEE, and John S. Suehle, Senior Member, IEEE, Impact of the Trapping of Anode Hot Holes on Silicon Dioxide Breakdown, IEEE Electron Device Letters, Vol.11, pp.667-669, 2002. 20.J. D. Bude, B. E. Weir, and P. J. Silverman, Explanation of stress-in-duced damage in thin oxides, IEEE IEDM, pp.179-182, 1998. 21.K. F. Schuegraf and C. Hu. Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation, IEEE Transactions Electron Devices, Vol.41, pp.761-764, 1994. 22.D. J. DiMaria, Anode hole injection and trapping in silicon dioxide, J. Appl. Phys., Vol.80, pp.304-317, 1996. 23.D. Esseni, J.D. Bude, and L. Selmi, On interface and oxide degradation in VLSI MOSFETs-Part Ⅱ:Fowler-Nordheim stress regime, IEEE Trans. Electron Devices, Vol.49, pp.254-264, 2002. 24.Y. Y. Hooi, I. I. Yaacob, S. M. Said, R. A. Keation, Characterization of Tunneling Current and Breakdown Voltage of Advanced CMOS Gate Oxide, ICSE2004 Proc. 2004, Kuala Lumpur, Malaysia, pp.193-198, 2004. 25.P.J. Liao, C. L. Chen, C. J. Wang, K. Wu, A New Multi-step Power-law TDDB Lifetime Model and Boron Penetration Effect on TDDB of Ultra Thin oxide, 45thAnnual International Reliability Physics Symposium, pp.574-575, 2007. 26.K. Deguchi, IEEE International Electron Device Meeting, pp.327, 2000. 27.J. Sune, and E. Y. Wu, IEEE International Electron Device Meeting, pp.388, 2005. 28.R. B. Fair, Modeling Boron Diffusion in Ultrathin Nitrided Oxide p+ Si Gate Technology, IEEE Electron Device Letters, VOL.18, NO.6, pp.244-247, 1997. 29.T. Morimoto, H. S. Momose, Y. Ozawa, K. Yamabe, and H. Iwai, effects of boron penetration and resultant limitations in ultrathin pure-oxide and nitrided-oxide gate films, IEDM Tech. Dig, pp.429, 1990. 30.S. S. Tan, C. H. Ang, T. P. Chen and L. Chan, Atomic Modeling of Nitrogen Neighboring Effect on Negative Bias Temperature Instability of pMOSFETs. IEEE ELECRON DEVICE LETTERS, Vol.25, No.7, pp.504-506, 2004. 31.H. Kufluoglu and M. A. Alam, Theory of Interface-Trap-Induced NBTI Degradation for Reduced Cross Section MOSFETs, IEEE TRANSACTIONS ON ELECTRON DEVICEDS, Vol.53, No.5, pp.1120-1130, 2006. 32.T. Sasaki, K. Kuwazawa, K. Tanaka, J. Kato, and D. L. Kwong, Engineering of Nitrogen Profile in an Ultrathin Gate Insulator to Improve Transistor Performance and NBTI, IEEE Electron Device Letters, Vol.24, No.3, pp.150-152, 2005. 33.N. Kimizuka, K. Yamaguchi, K. Imai, T. Iizuka, C. T. Liu, R .C. Keller and T. Horiuchi, NBTI enhancement by nitrogen incorporation into ultrathin gate oxide for 0.10-um gate CMOS generation, Symposium on VLSI Technology Digest of Technical Papers, pp.92, 2000.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10224-
dc.description.abstract在深次微米製程中,因短通道效應日益嚴重,多已將埋入通道PMOS之多晶矽閘極改為表面通道P+多晶矽閘極。表面通道的好處是載子經基材表面傳導,容易受閘極電壓的控制,因此表面通道要比埋入通道好控制許多。但PMOS閘極多晶矽需使用硼作為摻雜物,易產生硼會穿過氧化層/矽介面,進入基材而產生臨界電壓偏移現象。 目前製程上對於此問題所使用之解決方式,其中一個就是在形成閘極氧化層後採用氮化製程,來抑制P+ Poly內的摻雜硼原子對閘極氧化層的穿透與擴散至基底。然而使用傳統高温氮化法,因受限氮化濃度無法提升,以及先進製程對熱預算(thermal budget)的控制,早已無法滿足次世代製程技術要求。但電漿氮化製程卻擁有低溫,高氮化濃度以及高生產力等優點,使其成為次微米製程的主流。縱使有以上這些優點,氮濃度依然不能無限增加,因氮原子仍有機會擴散到SiO2/Si介面,導致元件特性退化以及衍生的元件可靠度壽命問題。 本論文由氧化層氮濃度分割實驗可得知,提高氮濃度有助於抑制P+閘極多晶矽內的摻雜硼原子穿透至基材且使等效氧化層厚度減少。但是當氮濃度由12.2%改變至14.3%時,閘極電流密度卻會大幅增加約30%且TDDB與NBTI壽命也會衰退約70-90%。此外,由TDDB測試結果指出PMOS壽命比NMOS短,直到當氮濃度到達14.3%時,二者壽命才會較為相近。而這表示NMOS單純只受到氮濃度影響,而PMOS則受到氮原子濃度及硼穿透效應雙重影響。藉由本實驗之結論,可得知氮濃度與可靠度壽命之關係,進而估算在產品10年保固的要求下,SPA(Slot plane Antenna)電漿氮化技術之氧化層氮化濃度之極限。zh_TW
dc.description.abstractFor deep submicron meter process,short channel effect becomes worse and so PMOS device has been changed to surface channel from buried channel by P+ gate poly use. However,P+ gate poly needs to dope by Boron, but device threshold voltage happen shift issue due to Boron penetrate through Si/SiO2 to substrate easily .On the other hand,if devices reduce Boron dosage to prevent penetration problem,P+ poly may impact depletion issue and then induce performance deterioration. About solution of advanced process for this issue,nitrided gate oxide usually be used to block boron penetration. However,traditional thermal nitridation processes are limited to low nitrogen concentration in oxide and advanced processes restrict thermal budget. Plasma nitridation technologies haven’t above shortage,it provide low process temperature、high nitrogen concentration and high throughput…etc. But Nitrogen is unable to increase infinitely because nitrogen may diffuse to Si/SiO2 interface and induce device deterioration and subsequent reliability problems. By nitrogen concentrations split experiment in thesis,increase of nitrogen concentration is good for blocking boron penetration and also improves reduction of equivalent oxide thickness (EOT). But it would raise gate leak current around 30%,and also lower TDDB and NBTI lifetime around 70-90%. Besides,TDDB results show NMOS lifetime is longer than PMOS lifetime. Until nitrogen concentration reach 14.3%,NMOS and PMOS lifetime will occur smaller gap. The hints are able to explain that NMOS lifetime is affected by nitrogen concentration but PMOS is affected by nitrogen concentration and Boron penetration. By relationship between reliability lifetime and nitrogen concentration,SPA(slot plane antenna) plasma nitridation technology can be estimated limitation of nitrided-oxide for 10 years product warranty.zh_TW
dc.description.tableofcontents中文摘要-------------------------------------------------I 英文摘要------------------------------------------------II 總目次-------------------------------------------------III 圖目次--------------------------------------------------VI 表目次--------------------------------------------------XI 第一章 序論 1-1前言--------------------------------------------------1 1-2奈米元件技術之挑戰------------------------------------1 1-3研究動機與目的----------------------------------------3 第二章 文獻回顧與理論背景 2-1閘極氧化層缺陷及介面電荷------------------------------5 2-2金氧半二極體電容--------------------------------------7 2-2-1電容操作模型----------------------------------------7 2-2-2電容與頻率關係--------------------------------------7 2-3金氧半場效電晶體操作原理-----------------------------10 2-3-1臨界電壓VT-----------------------------------------10 2-3-2汲極電流(Id)與電壓(Vd)輸出特性---------------------11 2-4 氧化層時間相關崩潰效應(TDDB)------------------------13 2-5 負偏壓溫度不穩定效應(NBTI)--------------------------16 2-6 韋伯分佈--------------------------------------------18 第三章 實驗步驟與方法 3-1 試片前處理------------------------------------------19 3-1-1金氧半元件製作-------------------------------------19 3-1-2測試鍵(Test Key)種類及佈局-------------------------21 3-2 實驗設備--------------------------------------------22 3-3 實驗流程--------------------------------------------24 3-3-1實驗流程說明---------------------------------------24 3-3-2 SPA氧化層氮化濃度樣品製備-------------------------24 3-3-3 MOSFET與MOS特性量測-------------------------------26 3-3-4 元件可靠度TDDB與NBTI量測--------------------------26 3-4 實驗分析儀器----------------------------------------30 第四章 結果與討論 4-1電容-電壓曲線與氧化層氮化濃度關係--------------------32 4-2電流密度-電壓曲線與氧化層氮化濃度關係----------------35 4-3 MOSFET Id-Vg曲線與氧化層氮化濃度關係----------------38 4-4 TDDB Lifetime與氧化層氮化濃度關係-------------------41 4-5 NBTI Lifetime與氧化層氮化濃度關係-------------------53 第五章 結論------------------------------------------- 60 參考文獻----------------------------------------------- 62zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1907200618132200en_US
dc.subjectNitrided oxideen_US
dc.subject氮化閘極氧化層zh_TW
dc.subjectReliabilityen_US
dc.subjectBoron penetrateen_US
dc.subject可靠度zh_TW
dc.subject硼穿透zh_TW
dc.title氮化薄閘極氧化層之可靠度劣化研究zh_TW
dc.titleReliability Deterioration of Nitrided Gate Oxide Thin Filmsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:材料科學與工程學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.