Please use this identifier to cite or link to this item:
標題: 複合氧化層於高壓閘極之應用
An Application of Composite Oxide to High Voltage Gate Oxide
作者: 巫守浚
Wu, Somesh
關鍵字: high voltage device;高壓元件;composite oxide;reliability;複合氧化層;可靠度
出版社: 材料科學與工程學系所
引用: 1. G. Tao, “Reliability Issues In Advanced Monolithic Embedded High Voltage CMOS Technologies,” Integrated Reliability Workshop Final Report, 2004 IEEE International, Oct. 2004, pp. 175-177. 2. S. Sivaram, Chemical Vapor Deposition, Van Nostrabd Reinhold, U.S.A., pp. 34-39, 1995. 3. 白木 靖寬、吉田 貞史,薄膜工程學,台北市全華書局,第2-51至2-60頁,民國93年。 4. W. G. Meyer, G. W. Dick, and K.H. Olson, “Integrable High Voltage CMOS: Devices, Process Application,” Electron Devices Meeting, 1985, pp. 732-735. 5. Y. Z. Xu, S. Hardikar, M. M. DeSouza, G. J. Cao, and E.M.S. Narayanan, “Design Of Novel High Side Power MOSFET Based On HVIC Process,” Electronics Letters, Vol. 35, Issue. 21, pp. 1880-1881, 1999. 6. F. Udrea, D. Garner, K. Sheng, A. Popescu, H. T. Lim, and W. I. Milne, “SOI Power Devices,” Electronics & Communication Engineering Journal, Vol. 12, Issue. 1, pp. 27-40, 2000. 7. K. Nakamura, S. Kusunoki, H. Nakamura, and M. Harada, “Advantages of Thick CVD Gate Oxide for Trench MOS Gate Structures,” Power Semiconductor Devices and Ics, 2000, pp. 83-86. 8. W. Sun, L. Shi, Z. Sun, Y, Yi,H. Li, and S. Lu, “High-Voltage Power IC Technology With nVDMOS, RESURF pLDMOS, and Novel Level-Shift Circuit for PDP Scan-Driver IC,” IEEE Transaction on Electron Device, Vol. 53, No.4, pp. 891-896, 2006. 9. S. F. Hsu, M. D. Ker, G. L. Lin, and Y. N. Jou, “Experimental Evaluation And Device Simulation Of Device Structure Influences On Latchup Immunity In High-Voltage 40-V Cmos Process,” IEEE 06CH37728 44th Annual International Reliability Physics, San Jose, USA, 2006, pp. 140-144. 10. J. Xu, Y. Shi, Z. Ren, S. Hu, S. Chen, Y. Zhao, Y. Ding, and Z. Lai, “An Optimized Scalable BSIM Macromodel for HV Double-Diffused Drain MOSFET I-V Characteristics,” IEEE Transactions On Power Electronics, Vol. 23, No. 2, pp.1027-1030, 2008. 11. T. Oohori, H. Saito, H. Kamizono, H. Miyakawa, and T. Kubota, “High Voltage CMOS Line-up for Display Driver Applications based on 0.13um CMOS with Aluminum metallization Scheme,” Proceedings of the 18th international Symposium on Power Semiconductor Devices & IC’s, Naples, Italy June, 2006, pp. 4-8. 12. G. H. Kawamoto, G. R. Magyar, and L. D. Yau, “Hot-Electron Trapping in Thin LPCVD SiO2 Dielectrics,” IEEE Transaction On Electron Devices, Vol. ED-34, No. 12, pp.2450-2455, 1987. 13. J. Lee, C. Hegarty, and C. Hu, “Electrical Characteristics of MOSFET’s Using Low-Pressure Chemical-Vapor-Deposited Oxide,” IEEE Electron Devices Letters, Vol. 9, No. 7, pp. 324-327, 1988. 14. R. Moazzami, and C. Hu, “A High Quality Stacked Thermal/LPCVD Gate Oxide Technology for ULSI,” IEEE Electron Devices Letters, Vol. 14, No. 2, pp. 72-73, 1993. 15. Y. H. Lee, L. D. Yau, E. Hansen, R. Chau, B. Sabi, S. Hossaini, and B. Asakawa, “Hot-Carrier Degradation of Submicrometer p-MOSFET’s with Thermal/ LPVCD Composite Oxide,” IEEE Transaction On Electron Devices, Vol. 40, No. 1, pp. 163-168, 1993. 16. N. Bhanta, P. P. Apte, and K. C. Saraswat, “Chare Trap Generation in LPCVD Oxide Under High Field Stressing,” IEEE Transaction On Electron Devices, Vol. 43, No. 4, pp. 554-560, 1996. 17. V. R. Rao, I Eisele, R. M. Patrokar, D. K. Sharma, J. Vasi, and T. Grabolla, “High-Field Stressing of LPCVD Gate Oxides,” IEEE Electron Devices Letters, Vol. 18, No. 3, pp. 84-86, 1997. 18. P. Candelier, F. Mondon, B. Guillaumot, G. Reimbold, and F. Martin, “Simplified 0.35-um Flash EEPROM Process Using High-Temperature Oxide (HTO) Deposited by LPCVD as Interpoly Dielectrics and Peripheral Gate Oxide,” IEEE Electron Devices Letters, Vol. 18, No. 7, pp. 306-308 1997. 19. K. E. Goodson, M. I. Flik, L. T. Su, and D. A. Antoniadis, “Annealing-Temperature Dependence of the Thermal Conductivity of LPCVD Silicon-Dioxide Layers,” IEEE Electron Devices Letters, Vol. 14, No. 10, pp.490-492, 1993. 20. KEITHLEY, “Gate Dielectric Capacitance-Voltage Characterization Using the Model 4200 Semiconductor Characterization System,” KEITHLEY Application Note Series, pp. 1-8, 2000. 21. D. K. Schroder, M. S. Fung, R. L. Verkuil, S. Pandey, W. H. Howland andM. Kleefstra, “Corona-Oxide-Semiconductor Device Characterization,” Solid-State Electronics, Vol. 42, No. 4, pp. 505-512, 1998. 22. P. Roman, J. Staffa, S. Fakhouri, M. Brubaker, and J. Ruzyllo, “Surface Dopant Concentration Monitoring Using Noncontact Surface Charge Profiling,” JOURNAL OF APPLIED PHYSICS, Vol. 83, No. 4, pp. 2297-2300, 1998. 23. R. Williams, and M. H. Woods, “High Electric Fields In Silicon Dioxide Produced By Corona Charging,” J. Appl. Phys., Vol. 44, No. 03, pp. 1026-1028, 1973. 24. D. K. Schroder, “Contactless Surface Charge Semiconductor Characterization,” Materials Science And Engineering, Vol. B91-92, pp. 196-210, 2002. 25. T. G. Miller, R. L. Verkuil and G.S. Horner, “Contactless Method for Measuring Total Charge of An Insulating Layer on A Substrate Using Corona Charge,” U. S. Patent, No. 6,191,605 B1, 2001. 26. 莊達人,VLSI製造技術,台北縣高立圖書,第234-236與486-489頁,民國93年。 27. S. H. Wu, P. Ives, and C. M. Han, “In Line Electrical Monitor of Plasma-Enhanced Silicon Oxynitirde for 70-NM Node or Beyond,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2007, pp. 170-174. 28. R. B. Comizzoli, “Corona Discharge-Electrostatic Method for Deposition of Powdered Passivation Glass on Semiconductor Device,” IEEE Transaction On Parts, Hybrids, And Packaging, Vol. PHP-13, No. 3, pp. 322-328, 1977. 29. G. S. Horner, M. S. Fung, R. L. Verkuil, and T. G. Miller, “COS-Based Q-V Testing: In-Line Qptions for Oxide Charge Monitoring,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 1995, pp. 63-67. 30. R. G. Cosway, and K. B. Catmull, “Manufacturing Implementation of Corona Oxide Silicon(COS) Systems for Diffusion Furnace Contamination Monitoring,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 1997, pp. 98-102. 31. S. M. Sze, “Semiconductor Devices Physics and Technology,” John Wiley & Sons, U. S. A., pp. 169-185. 2002. 32. M. Shimozuma, K. Kitamori, H. Ohno, H. Hasegawa, and H. Tagashira, “Room Temperature Deposition of Silicon Nitride Films Using Very Low Frequency (50Hz) Plasma CVD,” Journal of Electronic Materials, Vol. 14, No.5, pp. 573-586, 1985. 33. P. Pan, J. Abernathey, and C. Schaefer, “Properties Of Thin Lpcvd Silicon Oxynitride Films,” Journal of Electronic Materials, Vol. 14, No.5, pp. 617-632, 1985. 34. H. Ono, Y. Hosokawa, T. Ikarashi, K. Shinoda, and N. Ikarashi, “Formation Mechanism Of Interfacial Si-Oxide Layers During Postannealing Of Ta2o5/Si,” Journal Of Applied Physics, Vol 89, No. 2, pp. 995-1002, 2001. 35. K. S. Yim, V. Nguyen, B. H. Kim, G. Dixit, A. Demos, D. Witty, and H. Saad, “Development Of Hermetic Oxide Films For Low-K Pore Sealing,” Advanced Metallization Conference, 2004, pp. 171-176. 36. M. Xu, S. Xu, Y. C. Ee, C. Yong, J. W. Chai, S. Y. Huang, and J.D. Long, “Visible Photoluminescence From The Annealed TEOS Sio2” Materials Science And Engineering B Vol. 128, pp. 89-92, 2006. 37. J. Senvaitiene, J. Smirniva, A. Beganskiene, and A. Kareiva, “XRD And FTIR Characterisation Of Lead Oxide-Based Pigments And Glazes,” Acta Chim. Slov., Vol. 54, pp. 185-193, 2007. 38. H. Lin, Z. Xia, and S. Shen “The Study of the Intrinsic Charges in SiO2 Electrets,” (ISE 8), 8th International Symposium 1994, pp. 107-112. 39. V. R. Rao, W. Hansch, H. Baumgattner, I. Eisele, D. K. Sharma, J. Vasi, and T. Grabolla, “Charge Trapping Behaviour In Deposited And Grown Thin Metal-Oxide-Semiconductor Gate Dielectrics,” Thin Solid Films, vol. 296 pp. 37-40, 1997. 40. I. J. Gupta, and G. S. Horer, “A Comprehensive Assessment Of Contact Oxide Etch Damage Using Device Monitor And In-Line Noncontact Testing,” 2000 5th International Symposium On Plasma Process-Induced Damage, Santa Clara, CA, USA, May, 2000, pp. 73-76. 41. J. L. Everaert, T. Conard, and M. Schaekers, “Sion Gate Dielectric Formation By Rapid Thermal Oxidation Of Nitrided Si,” 13th IEEE International Conference On Advanced Thermal Processing Of Semiconductor – RTP 2005, pp. 135-138. 42. M. Dautrich, P. M. Lenahan, and A. Y. Kang, “Non-Invasive Nature Of Corona Charging On Thermal Si/Sio2 Structures,” Integrated Reliability Workshop Final Report, 2003 Ieee International, pp. 7-9. 43. M. H. Woods, and R. Williams, “Injection And Removal Of Ionic Charge At Room Temperature Through The Interface Of Air With Sio2,”J. Appl. Phys., Vol. 44, No. 12, pp. 5506-5510, 1973. 44. K. Nauka, “Contactless Measurement of the Si-Buried Oxide Interfacial Charges in SOI Wafers with Surface Photovoltage Technique,” Microelectronic Engineering, Vol. 36, pp. 351-357, 1997. 45. X. Zhang, M. Juang, S. Tai, K. Chen, and E. Wosen, “Non-contact COS Charge Analysis For In-line Monitoring of Wet Cleaning Processes,” Proceedings of SPIE, Vol. 3509, pp. 106-114, 1998. 46. 許倬倫、劉柏村,賴明志,戴寶通,”汞探針量測系統及其在介電薄膜特性分析上之應用簡介”,毫微米通訊,第8卷,第2期,第31-35頁,民國90年。

In recent years due to the liquid crystal display TV, the cellular phone etc electrical products are very popular and have a huge demand. Some can endure the high voltage in inside these product''s controller the IC, this article is discusses this kind of high-voltage device to face in the system regulation generation unceasing evolution process to the reliability not good question.
We discovered in the trouble device, its steps coverage is generally not good, and then develops the composite oxide layer idea. The hope does not affect in device's electrical characteristic, can also have the improvement to the steps coverage. To overall understand the question, in experiment''s process, first measure by the measuring instrument to carry on the basic thin film characteristic analysis to experiment''s semiconductor material, then uses the different experimental condition by way of device''s electrical test and reliability test, attempts and induces solves the question direction.
Finally penetrates this experiment to let us know the composite oxide layer related materials behavior which and the application the thermal oxide layer and chemical vapor deposition film forms when the gate oxide layer regarding device electric properties influence, also has provided other one kind of index to device''s reliability analysis.
其他識別: U0005-1907200618335700
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.