Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10231
標題: 二氧化碳資源化再利用於鎂及鎂合金化成處理 與表面改質以提升其抗蝕性與生物相容性之研究
A study on CO2 as a resource for Mg and Mg alloy conversion treatment and surface modification to enhance corrosion resistance and biocompatibility
作者: Lin, Chun-Kai
林俊凱
關鍵字: 鎂;Magnesium;鎂合金;鋁;鐵;水滑石;層狀雙氫氧化物;碳酸;腐蝕;陰離子交換;穿透式電子顯微鏡;傅立葉紅外線光譜;拉曼光譜;核磁共振儀;體外測試;模擬體液;接觸角;Magnesium alloy;Aluminium;Iron;Hydrotalcite;Layered double hydroxide;Carbonic acid;corrosion;Anion-exchangeability;TEM;ESCA;IR spectroscopy;Ramen spectroscopy;Nuclear magnetic resonance;Polarization;In-vitro test;R-SBF;contact angle
出版社: 材料科學與工程學系所
引用: 1. J. E. Gray and B. Luan, J. Alloy. Compd., 2002, 336, 88-113. 2. M. M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM:International Metals Park, OH., 1999, pp. 145-150. 3. H. Umehara, M. Takaya and S. Terauchi, Surf. Coat. Technol., 2003, 169-170, 666-669. 4. M. A. Gonzalez-Nunez, C. A. Nunez-Lopez, P. Skeldon, G. E. Thompson, H. Karimzadeh, P. Lyon and T. E. Wilks, Corros. Sci., 1995, 37, 1763-1772. 5. J. L. Skar, L. K. Sivertsen and J. M. Oster, in ICEPAM - International Conference on Environmental friendly pre-treatment for Aluminum and other Metals, Oslo, Norway, 2004, pp. 1-4. 6. C. S. Lin and S. K. Fang, J. Electrochem. Soc., 2005, 152, B54-B59. 7. S. L. Kim, Y. Zhou, R. Ichino, M. Okido and S. Tanikawa, Met. Mater.-Int., 2003, 9, 207-213. 8. G. Hanko, H. Antrekowitsch and P. Ebner, JOM, 2002, 54, 51-54. 9. A. Javaid, E. Essadiqi, S. Bell and B. Davis, in Magnesium Technology 2006, eds. A. A. Luo, N. R. Neelameggham and R. S. Beals, TMS Warrendale. PA, 2006, pp. pp.7-12. 10. F. Cavani, F. Trifiro and A. Vaccari, Catal. Today, 1991, 11, 173-301. 11. U. Olsbye, D. Akporiaye, E. Rytter, M. Ronnekleiv and E. Tangstad, Appl. Catal. A-Gen., 2002, 224, 39-49. 12. H. C. Greenwell, P. J. Holliman, W. Jones and B. V. Velasco, Catal. Today, 2006, 114, 397-402. 13. K. Okamoto, N. Iyi and T. Sasaki, Appl. Clay Sci., 2007, 37, 23-31. 14. M. Adachi-Pagano, C. Forano and J. Besse, J. Mater. Chem., 2003, 13, 1988-1993. 15. P. S. Braterman, Z. P. Xu and F. Yarberry, Handbook of Layered Materials, Marcel Decker Inc., New York, 2004. 16. J. H. Lee, S. W. Rhee and D. Y. Jung, Chem. Mat., 2006, 18, 4740-4746. 17. K. Okamoto, T. Sasaki, T. Fujita and N. Iyi, J. Mater. Chem., 2006, 16, 1608-1616. 18. E. Gardner, K. M. Huntoon and T. J. Pinnavaia, Adv. Mater., 2001, 13, 1263-1266. 19. Z. Lu, F. Zhang, X. Lei, L. Yang, S. Xu and X. Duan, Chem. Eng. Sci., 2008, 63, 4055-4062. 20. J. Liu, X. Huang, Y. Li, K. Sulieman, X. He and F. Sun, J. Phys. Chem. B, 2006, 110, 21865. 21. J. Liu, Y. Li, X. Huang, G. Li and Z. Li, Adv. Funct. Mater., 2008, 18, 1448-1458. 22. M. M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM:International Metals Park, OH., 1999. pp.44-51. 23. H. G. Seiler, A. Sigel and H. Sigel, Handbook on Toxicity of Inorganic Compounds, Marcel Dekker, New York, 1998. 24. E. D. McBride, J. Am. Med. Assoc., 1938, 111, 2464-2467. 25. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth and H. Windhagen, Biomaterials, 2005, 26, 3557-3563. 26. M. P. Staiger, A. M. Pietak, J. Huadmai and G. Dias, Biomaterials, 2006, 27, 1728-1734. 27. W. M. Kriven, S. Y. Kwak, M. A. Wallig and J. H. Choy, MRS bulletin, 2004, 29, 33-37. 28. S. Y. Kwak, W. M. Kriven, M. A. Wallig and J. H. Choy, Biomaterials, 2004, 25, 5995-6001. 29. Z. P. Xu and G. Q. Lu, Pure Appl. Chem., 2006, 78, 1771-1780. 30. U. Costantino, V. Ambrogi, M. Nocchetti and L. Perioli, Microporous Mesoporous Mat., 2008, 107, 149-160. 31. R. Ambat, N. N. Aung and W. Zhou, Corros. Sci., 2000, 42, 1433-1455. 32. R. H. Petrucci, W. S. Harwood and F. G. Herring, General Chemistry, Prentice-Hall Inc, New Jersey, 2002. 33. B. L. Yu and J. Y. Uan, Metall. Mater. Sci., 2005, 36, 2245-2252. 34. ASTM D3359, Standard Test Method for Measuring Adhesion by Tape Test, Test Method B, Cross Cut Test Mehtod, ASTM, West Conshohocken, PA, 1993. 35. M. T. Domenech-Carbo, A. Domenech-Carbo, L. Osete-Cortina and M. C. Sauri-Peris, Microchim. Acta, 2006, 154, 123-142. 36. Y. Mori, M. Ueda, M. Hashimoto, Y. Aoi, S. Tanase and T. Sakai, Surf. Coat. Technol., 2008, 202, 4094-4101. 37. D. Kessler and P. Theato, Langmuir, 2009, 25, 14200-14206. 38. M. Pourbaix, National Association of Corrosion Engineers International, Houston, TX, 1974, 139-145. 39. G. F. Vander-Voort, Metallography principles and practice, McGraw-Hill, New York, USA, 1984. 40. H. Bommer, in Magnesium Alloys and their Applications, eds. B. L. Mordike and K. U. Kiner, Werkstoff-infomationsgesellschaf, Wolfsburg, Germany,, 1998, p. 79. 41. M. H. Grosjean, M. Zidoune, L. Roue and J. Y. Huot, Int. J. Hydrog. Energy, 2006, 31, 109-119. 42. I. A. Taub, W. Roberts, S. LaGambina and K. Kustin, J. Phys. Chem. A, 2002, 106, 8070-8078. 43. D. R. Lide, Handbook of Chemistry, CRC press, Boca Raton, Florida, 1992. 44. M. M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM:International Metals Park, OH., 1999, p. 199. 45. E. Ghali, W. Dietzel and K. U. Kainer, J. Mater. Eng. Perform., 2004, 13, 7-23. 46. G. Ballerini, U. Bardi, A. Lavacchi, D. Migliorini, B. Daniele, R. Bignucolo and G. Ceraolo, Magnesium Industry, 2002, 3, 16-20. 47. G. Song, A. Atrens, D. S. John, X. Wu and J. Nairn, Corros. Sci., 1997, 39, 1981-2004. 48. D. A. Jones, Principles and Prevention of Corros, Prentice Hall:Englewood Cliffs, NJ, 1996, pp.40-74. 49. G. L. Makar and J. Kruger, J. Electrochem. Soc., 1990, 137, 414-421. 50. G. Song, A. Atrens, D. Stjohn, J. Nairn and Y. Li, Corros. Sci., 1997, 39, 855-875. 51. Z. Shi, G. Song and A. Atrens, Corros. Sci., 2005, 47, 2760-2777. 52. Z. Shi, G. Song and A. Atrens, Corros. Sci., 2006, 48, 1939-1959. 53. W. J. Cheong, B. L. Luan and D. W. Shoesmith, Corros. Sci., 2007, 49, 1777-1798. 54. B. L. Yu and J. Y. Uan, Scr. Mater., 2006, 54, 1253-1257. 55. K. T. Rie and J. Wohle, Surf. Coat. Technol., 1999, 112, 226-229. 56. J. Y. Uan, C. F. Li and B. L. Yu, Metall. Mater. Sci., 2008, 39, 703-715. 57. H. H. Elsentriecy, K. Azumi and H. Konno, Electrochem. Acta, 2007, 53, 1006-1012. 58. D. Zuniga, Master Thesis, Texas A&M University, College Station, TA, 2006, p.24. 59. M. M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM:International Metals Park, OH., 1999. p.143. 60. ASTM B879-97, Standard Practice for Applying Non-Electrolytic Conversion Coatings on Magnesium and Magnesium Alloys, ASTM, Philadelphia, PA, 2007. 61. C. Blawert, N. Hort and K. U. Kainer, Trans. Indian Inst. Met., 2004, 57, 397-408. 62. S. Ono, K. Asami and N. Masuko, Mater. Trans.-JIM, 2001, 42, 1225-1231. 63. C. S. Lin, C. Y. Lee, W. C. Li, Y. S. Chen and G. N. Fang, J. Electrochem. Soc., 2006, 153, B90-B96. 64. L. Kouisni, M. Azzi, M. Zertoubi, F. Dalard and S. Maximovitch, Surf. Coat. Technol., 2004, 185, 58-67. 65. W. Zhou, D. Shan, E.H. Han and W. Ke, Corros. Sci., 2008, 50, 329-337. 66. Y. Song, D. Shan, R. Chen, F. Zhang and E.H. Han, Corros. Sci., 2009, 51, 62-69. 67. D. Hawke and D. L. Albright, Metal Finishing, 1995, 93, 34-38. 68. F. Zucchi, A. Frignani, V. Grassi, G. Trabanelli and C. Monticelli, Corros. Sci., 2007, 49, 4542-4552. 69. H. Huo, Y. Li and F. Wang, Corros. Sci., 2004, 46, 1467-1477. 70. L. Anicai, R. Masi, M. Santamaria and F. Di Quarto, Corros. Sci., 2005, 47, 2883-2900. 71. C. S. Lin, H. C. Lin, K. M. Lin and W. C. Lai, Corros. Sci., 2006, 48, 93-109. 72. K. H. Yang, M. D. Ger, W. H. Hwu, Y. Sung and Y. C. Liu, Mater. Chem. Phys., 2007, 101, 480-485. 73. H. Ardelean, I. Frateur and P. Marcus, Corros. Sci., 2008, 50, 1907-1918. 74. A. L. Rudd, C. B. Breslin and F. Mansfeld, Corros. Sci., 2000, 42, 275-288. 75. K. Brunelli, M. Dabala, I. Calliari and M. Magrini, Corros. Sci., 2005, 47, 989-1000. 76. X. Zhong, Q. Li, J. Hu and Y. Lu, Corros. Sci., 2008, 50, 2304-2309. 77. C. E. M. Meskers, A. Kvithyld, M. A. Reuter, T. A. Engh and . in Magnesium Technology 2006, eds. A. A. Luo, N. R. Neelameggham and R. S. Beal, TMS, Warrendale. PA,, 2006, pp. 33-38. 78. A. Javaid, E. Essadiqi, S. Bell and B. Davis, in Magnesium Technology 2006, eds. A. A. Luo, N. R. Neelameggham and R. S. Beal, TMS, Warrendale. PA, 2006, pp. 7-12. 79. Y. Zhang, C. Yan, F. Wang, H. Lou and C. Cao, Surf. Coat. Technol., 2002, 161, 36-43. 80. J. K. Lin, C. L. Hsia and J. Y. Uan, Scr. Mater., 2007, 56, 927-930. 81. M. A. Aramendia, V. Borau, C. Jimenez, J. M. Marinas, J. R. Ruiz and F. J. Urbano, J. Solid State Chem., 2002, 168, 156-161. 82. F. Xiao, B. Zhang and C. Lee, J. Environ. Sci., 2008, 20, 907-914. 83. M. J. Hernandez-Moreno, M. A. Ulibarri, J. L. Rendon and C. J. Serna, Phys. Chem. Miner., 1985, 12, 34-38. 84. S. Narayanan and K. Krishna, Appl. Catal. A, 1998, 174, 221-229. 85. F. Millange, R. I. Walton and D. O''Hare, J. Mater. Chem., 2000, 10, 1713-1720. 86. F. R. Costa, A. Leuteritz, U. Wagenknecht, D. Jehnichen, L. Hausler and G. Heinrich, Appl. Clay Sci., 2008, 38, 153-164. 87. I. C. Chisem and W. Jones, J. Mater. Chem., 1994, 4, 1737-1744. 88. C. J. Serna, J. C. Lyons, J. L. White and S. L. Hem, J. Pharm. Sci. 1983, 72, 769-771. 89. J. Perez-Ramirez, G. Mul and J. A. Moulijn, Vib. Spectrosc., 2001, 27, 75-88. 90. J. Perez-Ramirez, G. Mul, F. Kapteijn and J. A. Moulijn, J. Mater. Chem., 2001, 11, 821-830. 91. R. L. Frost and B. J. Reddy, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2006, 65, 553-559. 92. A. Beres, I. Palinko, I. Kiricsi, J. B. Nagy, K. Yoshimichi and F. Mizukami, Appl. Catal. A-Gen., 1999, 182, 237-247. 93. J. C. Dupin, H. Martinez, C. Guimon, E. Dumitriu and I. Fechete, Appl. Clay Sci., 2004, 27, 95-106. 94. M. Mora, C. Jimenez-Sanchidrian and J. R. Ruiz, J. Colloid Interface Sci., 2006, 302, 568-575. 95. M. A. Aramendia, Y. Aviles, J. A. Benitez, V. Borau, C. Jimenez, J. M. Marinas, J. R. Ruiz and F. J. Urbano, Microporous Mesoporous Mat., 1999, 29, 319-328. 96. W. Y. Dong, Y. J. Sun, H. Y. He and Y. C. Long, Microporous Mesoporous Mat., 1999, 32, 93-100. 97. S. Mohmel, I. Kurzawski, D. Uecker, D. Muller and W. Gesner, Cryst. Res. Technol., 2002, 37, 359-369. 98. M. Zhao, S. Wu, J. Luo, Y. Fukuda and H. Nakae, Surf. Coat. Technol., 2006, 200, 5407-5412. 99. C. D. Hoyo, Appl. Clay Sci., 2007, 36, 103-121. 100. H. Zhu, M. Webb, J. Buckley and N. Roberts, J. Pharm. Sci., 2001, 91, 53-66. 101. L. Raki, D. G. Rancourt and C. Detellier, Chem. Mat., 1995, 7, 221-224. 102. S. Kannan and R. Jasra, J. Mater. Chem., 2000, 10, 2311-2314. 103. P. S. Kumbhar, J. Sanchez-Valente, J. M. M. Millet and F. Figueras, J. Catal., 2000, 191, 467-473. 104. N. Tahir, Z. Abdelssadek, D. Halliche, S. Saadi, R. Chebout, O. Cherifi and K. Bachari, Surf. Interface Anal., 2008, 40, 254-258. 105. F. Li, J. Liu, D. G. Evans and X. Duan, Chem. Mat., 2004, 16, 1597-1602. 106. M. L. Occelli, J. P. Olivier, A. Auroux, M. Kalwei and H. Eckert, Chem. Mat., 2003, 15, 4231-4238. 107. J. A. Wang, A. Morales, X. Bokhimi, O. Novaro, T. Lopez and R. Gomez, J. Phys. Chem. B, 1999, 103, 299-303. 108. Y. Du, N. Rees and D. O''Hare, Dalton Trans., 2009, 38, 8197-8202. 109. E. Scavetta, A. Mignani, D. Prandstraller and D. Tonelli, Chem. Mat., 2007, 19, 4523-4529. 110. J. Prince, A. Montoya, G. Ferrat and J. S. Valente, Chem. Mat., 2009, 21, 5826-5835 111. J. Y. Uan, J. K. Lin and Y. S. Tung, J. Mater. Chem., 2010, 20, 761-766. 112. A. C. Alfrey, G. R. LeGendre and W. D. Kaehny, New England Journal of Medicine, 1976, 294, 184-188. 113. M. Kaye, Clinical nephrology, 1983, 20, 208-211. 114. A. Davenport and N. B. Roberts, Nephron, 1989, 52, 253-258. 115. M. M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM:International Metals Park, OH., 1999. pp. 12-25. 116. B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung and A. Haverich, Heart, 2003, 89, 651-656. 117. P. Zartner, R. Cesnjevar, H. Singer and M. Weyand, Catheter. Cardiovasc. Interv., 2005, 66, 590-594. 118. R. Erbel, C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F. R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. Bose, J. Koolen, T. F. Luscher, N. Weissman and R. Waksman, Lancet, 2007, 369, 1869-1875. 119. O. Duygulu, R. A. Kaya, G. Oktay and A. A. Kaya, 2007, 546-549, 421-424. 120. B. Denkena, F. Witte, C. Podolsky and A. Lucas, in Proc. of 5th euspen International Conference, Montpelier, France, 2005. 121. L. L. Hench and J. Wilson, An introduction to bioceramics, World Scientific Pub Co Inc, London, 1999. 122. M. Niinomi, Metall. Mater. Trans. A, 2002, 33A, 477-486. 123. A. V. Sergueeva, J. Zhou, B. E. Meacham and D. J. Branagan, Mater. Sci. Eng. A, 2009, 526, 79-83. 124. J. Nagels, M. Stokdijk and P. M. Rozing, J. Shoulder Elbow Surg., 2003, 12, 35-39. 125. G. Song and S. Song, Adv. Eng. Mater., 2007, 9, 298-302. 126. N. T. Kirkland, J. Lespagnol, N. Birbilis and M. P. Staiger, Corros. Sci., 2010, 52, 287-291. 127. E. Zhang, L. Xu and K. Yang, Scr. Mater., 2005, 53, 523-527. 128. Y. M. Wang, F. H. Wang, M. J. Xu, B. Zhao, L. X. Guo and J. H. Ouyang, Appl. Clay Sci., 2009, 255, 9124-9131. 129. S. Hiromoto and A. Yamamoto, Electrochim. Acta, 2009, 54, 7085-7093. 130. Y. Wang, M. Wei and J. Gao, Mater. Sci. Eng. C, 2009, 29, 1311-1316. 131. D. A. Cortes-Hernandez, H. Y. Lopez and D. Mantovani, Transtec Publications, 2007, 539-543, 589-594. 132. J. A. Rivera, G. Fetter and P. Bosch, J. Porous Mat., 2009, 16, 409-418. 133. Z. Gu, A. Thomas, Z. Xu, J. Campbell and G. Lu, Chem. Mat., 2008, 20, 3715-3722. 134. S. J. Choi, J. M. Oh and J. H. Choy, J. Phys. Chem. Solids, 2008, 69, 1528-1532. 135. M. Trikeriotis and D. F. Ghanotakis, Int. J. Pharm., 2007, 332, 176-184. 136. V. Ambrogi, G. Fardella, G. Grandolini, M. Nocchetti and L. Perioli, J. Pharm. Sci., 2003, 92, 1407-1418. 137. H. Nakayama, K. Kuwano and M. Tsuhako, J. Phys. Chem. Solids, 2008, 69, 1552-1555. 138. S. Aisawa, N. Higashiyama, S. Takahashi, H. Hirahara, D. Ikematsu, H. Kondo, H. Nakayama and E. Narita, Appl. Clay Sci., 2007, 35, 146-154. 139. M. S. Gasser, Colloid Surf. B-Biointerfaces, 2009, 73, 103-109. 140. F. Yang, B. Y. Xie, J. Z. Sun, J. K. Jin and M. Wang, Mater. Lett, 2008, 62, 1302-1304. 141. A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki and T. Nakamura, J. Biomed. Mater. Res. Part A, 2003, 65, 188-195. 142. J. K. Lin and J. Y. Uan, Corros. Sci., 2009, 51, 1181-1188. 143. G. Song and A. Atrens, Adv. Eng. Mater., 2003, 5, 837-858. 144. G. L. Song, Corros. Sci., 2009, 51, 2063-2070. 145. G. L. Song and Z. Q. Xu, Electrochim. Acta, 2010, 55, 4148-4161. 146. M. Fontana and N. Greene, Corrosion Engineering, McGraw Hill, New York, 1978. 147. D. A. Jones, Principles and Prevention of Corros, Prentice Hall:Englewood Cliffs, NJ, 1996, pp.144-145. 148. Y. Ding, Z. Gui, J. Zhu, Y. Hu and Z. Wang, Mater. Res. Bull., 2008, 43, 3212-3220. 149. O. P. Ferreira, O. L. Alves, D. X. Gouveia, A. G. Souza Filho, J. A. C. de Paiva and J. M. Filho, J. Solid State Chem., 2004, 177, 3058-3069. 150. D. G. Cantrell, L. J. Gillie, A. F. Lee and K. Wilson, Applied Catalysis A: General, 2005, 287, 183-190. 151. C. D. Wagner, W. N. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg, Handbook of X-Ray Photoelectron Spectrometry, Perkin-Elmer Eden Praine, 1979. 152. S. Richardson, Mineral. Mag., 1989, 53, 223-229. 153. G. Carja, R. Nakamura and H. Niiyama, Appl. Catal. A-Gen., 2002, 236, 91-102. 154. H. C. B. Hansen and R. M. Taylor, Clay Min., 1990, 25, 161. 155. J. C. Meyer, C. O. Girit, M. F. Crommie and A. Zettl, Nature, 2008, 454, 319-322. 156. D. B. Williams and C. B. Carter, Transmission Electron Microscopy, Plenum Press, New York, 1996, p.62. 157. L. W. Hobbs, Introduction to Analytical Electron Microscopy, Plenum Press, New York, 1979. p.437. 158. J. H. Lee, H. W. Jung, I.-K. Kang and H. B. Lee, Biomaterials, 1994, 15, 705-711. 159. M. Lampin, R. Warocquier-Clerout, C. Legris, M. Degrange and M. Sigot-Luizard, J. Biomed. Mater. Res. Part A, 1998, 36, 99-108. 160. A. O. Paiva, M. G. Duarte, M. H. V. Fernandes, M. H. Gil and N. G. Costa, Materials Research, 2006, 9, 417-423.
摘要: 
本論文共分為4個章節。在第1章中,探究於鎂合金表面製備Mg-Al hydrotalcite 層及其應用之研究;第2章是探討利用高pH之水熱處理法快速生長Mg-Al hydrotalcite 層;第3章節中開發一個新的製程方法於純鎂金屬表面製備無鋁的Mg-Fe LDH 層和 (第4章)總結論。
溫室氣體CO2可視為一種資源。本研究將之再利用於鎂合金表面改質處理。以此CO2製備碳酸水溶液,此溶液可作為鎂合金化成處理液。第1章節中證實利用上述溶液有助於鎂合金表面形成具高方向性的Mg-Al hydrotalcite (Mg6Al2(OH)16CO3‧4H2O)化成膜。此化成膜可增加鎂合金的抗蝕性,可歸因於該化成膜具有吸附具侵蝕性之氯離子同時釋放碳酸根離子之特性在NaCl水溶液中。
由於鎂合金表面生長具抗蝕性Mg-Al hydrotalcite之處理時間至少需要12小時,因此,於第2章中探討Mg-Al hydrotalcite化成膜由非晶質Mg-Al hydrotalcite前趨物轉變成結晶體化成膜的過程及原因。藉由傅立葉紅外線光譜、拉曼光譜、固態核磁共振光譜、化學分析電子能譜儀及穿透式電子顯微鏡以研究非晶質Mg-Al hydrotalcite前趨物轉變成結晶質化成膜的過程中,其成分及晶體結構的變化並進一步探究其轉化機制及原因,試圖縮短Mg-Al hydrotalcite層之製備時間。本研究利用高pH值水熱處理可快速將非晶質Mg-Al hydrotalcite前趨物轉變成具結晶性的Mg-Al hydrotalcite,製備Mg-Al hydrotalcite層的時間可縮短至4小時,並且仍具備良好的抗蝕能力。
本研究提出一個新的方法以製備無鋁的層狀雙氫氧化物層在純鎂金屬表面。將純鎂金屬浸置於pH 5.6,50度之Fe3+/HCO3/CO32溶液中45分鐘,再浸置於pH9.5之碳酸溶液中。經上述處理後,可於純鎂表面生長具方向性之Mg-Fe-CO3 LDH層。另外,本研究針對表面具有Mg-Fe-CO3 LDH層之純鎂金屬進行體外腐蝕測試,根據測試結果顯示,Mg-Fe-CO3 LDH層可增加純鎂金屬的抗蝕性在模擬體液中。

This thesis has four chapters, involving (1) the preparation and applications of Mg-Al hydrotalcite coating on Mg alloy, (2) rapid growth of Mg-Al-Zn hydrotalcite coating on Mg substrate by a high-pH hydrothermal treatment, (3) preparation of Al-free Mg-Fe LDH coating on pure Mg metal and (4) general conclusions.
Chapter 1 describes a novel method to achieve direct formation of highly-oriented Mg-Al hydrotalcite on Mg-Al-Zn alloy in aqueous HCO3-/CO32- solution of pH 4.3 at 50 C. When Mg-Al-Zn alloy sample was immersed in the aqueous HCO3-/CO32-, the surface of the Mg sample corroded to raise the solution pH around the surface and to release divalent and trivalent metal cations in the solution. A two-layered Mg-Al hydrotalcite coating was formed on the Mg alloy coupon substrate. Chemical analysis data suggest that the chemical formula of the Mg-Al hydrotalcite on the Mg coupon sample was Mg4.55Zn0.05Al2(OH)13.20CO3‧mH2O. The hydrotalcite-coated Mg sample had a much greater corrosion resistance than an AZ91D Mg alloy sample. In a corrosive environment (chloride solution), the hydrotalcite layer exhibited CO32- for Cl- anion-exchangeability, causing that the layer protected Mg alloy against corrosion.
Although chemical conversion coating treatment in carbonic acid solution is a relatively clean method, it takes least 12 h to produce a crystalline hydrotalcite coating on an AZ91D Mg alloy substrate to protect it against corrosion. Therefore, one of the goals of the chapter 2 is to reduce the formation time of crystalline Mg-Al hydrotalcite coating in aqueous HCO3-/CO32- on an Mg alloy surface. The relationship of the growth of the Mg-Al hydrotalcite layer between the pH of the carbonic acid solution was investigated to elucidate the process of formation of the coating on an Mg alloy surface. An amorphous precursor layer was firstly formed on AZ91D sample in an acidic carbonic solution. The precursor layer transformed into a crystallized Mg-Al hydrotalcite when the sample was continuously immersed in the bath until the bath changed from acidic to alkaline. A rapid conversion treatment was, therefore, developed: it involved maintaining the pH under 6 for precursor layer formation and then increasing it to 11.5 to form crystallized Mg-Al-Zn hydrotalcite coating. The precursor layer was treated in a strongly alkaline solution, causing leaching of the amphoteric Al3+ from it. The leaching step evidently affected crystallization from an amorphous precursor layer to a crystalline coating. The formation time of crystallized Mg-Al-Zn hydrotalcite coating was reduced from 12 to 4 h.
In the chapter 3, a novel method for forming an Al-free LDH coating on pure Mg sample was presented. Highly-oriented Mg-Fe-CO3 LDH coating was formed on pure Mg samples by treating the sample in a pH 5.6 aqueous Fe3+/HCO3/CO32 at 50 C, and then immersing it in a pH 9.5 aqueous HCO3/CO32 at 50 C. The former step was performed to yield Mg2+ in aqueous solution with pH 5.6 by corroding the Mg sample to form an Mg-Fe amorphous precursor layer on the Mg substrate. The latter treatment in pH 9.5 aqueous HCO3/CO32 at 50 C resulted in the growth of the precursor into a strongly-oriented Mg-Fe-CO3 LDH. The chemical formula of the Mg-Fe-CO3 LDH is Mg0.74Fe0.26(OH)2(CO3)0.13‧mH2O. Several in vitro tests of the Mg-Fe-CO3 LDH coating on Mg sample were performed. Based on the measured contact angle between the sample surface and human whole blood, the Mg-Fe-CO3 LDH coating can improve the hydrophilicity of a pure Mg surface. According to the results of an in vitro corrosion test in revised simulated body fluid (R-SBF), the Mg-Fe-CO3 LDH coated sample had a much higher corrosion resistance than the pure Mg substrate.
URI: http://hdl.handle.net/11455/10231
其他識別: U0005-2007201110075300
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.