Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10234
標題: 卵礫石粒徑分佈之空間統計分析及其在免開挖工程上的應用
Spatial Analysis of Gradation of Gravel Formations with Application to No-Dig Engineering
作者: 江長億
Jiang, Chang-Yi
關鍵字: 卵礫石;gravel;免開挖工程;空間統計分析;迴歸分析;No-Dig engineering;spatial analysis;regression analysis
出版社: 土木工程學系所
引用: 參考文獻 1.Matheron, G., 1963, “Principles of Geostatistics” , Economic Geol., Vol. 58, pp.1246~1266. 2.曾輝,褚艷鈴,李書娟,2007,「南昌地區建設用地空間擴展的 廣義轉移概率模型建設與應用研究」,地理科學,第27卷,第4期,pp.473~479。 3.房智恒,王李管,冯兴隆,贾明涛,2008,「基于地质统计学的矿山储量估算」,礦業快報,Serial,No474,pp.28~31。 4.李長青,邵景力,靳萍,崔亞莉,2009,「平原地區水文地質結 構條件模擬及其應用以華北平原為例」,現代地質,第23卷,第1期,pp.137~143。 5.Davis, 1999, T-PROGS:Transition Probability Geostatistical Software, Version 2.1, Hydrologic Sciences Graduate Group University of California. 6.李朝賢,1977,「作業研究概論」,弘業文化實業股份有限公司出版。 7.楊超然,1977,「作業研究」,三民書局出版。 8.Aquaveo, 2011, GMS 8.0 Tutorial, T-PROGS. 9.祝曉彬,2003,「地下水模擬系統(GMS)軟件」,水文地質工程 地質,第5期,pp.53~55。 10.王淼,陳晨,張麗玲,2007,「基於鑽孔數據和GMS的地層三维 建模與可視化的研究」,工程建設與設計,第11期,pp. 72 ~74。 11.崔義文,張麗玲,2008,「長春市第四系三維地質結構模型的研 究」,吉林地質,第27卷,第2期。 12.魏瑾,2009,「峰峰煤田萬年礦三維可視化地質建模」,石家莊 職業技術學院學報,第21卷,第4期,pp.18~20。 13.Ye, M., Cooper, C.A., Chapman, J.B., Gillespie, D., Zhang, Y., 2009, A Geologically Based Markov Chain Model for Simulating Tritium Transport with Uncertain Conditions in a Nuclearstimulated Natural Gas Reservoir, SPE Reservoir Evaluation & Engineering. 14.Dell’Arciprete, D., Felletti, F., Bersezio, R., 2010, “Simulation of Fine-Scale Heterogeneity of Meandering River Aquifer Analogues : Comparing Different Approaches”, GEOENV VII–Geostatistics for Environmental Applications, Quantitative Geology and Geostatistics, Vol.16, pp.127~137. 15.Seeboonruang, U., 2006, “An Application of Transition Probability Approach to Geostatistical Simulation: A Case Study in the Lower Chao Phraya Basin, Thailand”, Proceedings of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Applications Universiti Sains Malaysia, Penang. 16.Theodossiou , N., Latinopoulos , D., 2009, “Economic Aspects of the Delineation of Well Head Protection Areas under Conditions of Uncertainty”, Proceedings of the 2nd International CEMEPE & SECOTOX Conference, Mykonos, pp.309~314. 17.Felletti, F., Beretta, G.P., 2009, “Expectation of Boulder Frequency when Tunneling in Glacial Till: A Statistical Approach Based on Transition Probability”, Engineering Geology, Vol.108, pp.43–53. 18.張吉佐,陳逸駿,顏世傑,蔡宜璋,1996,「台灣地區中北部卵礫石層工程性質及施工探討」,地工技術雜誌,第55期,pp.35~46。 19.Matheson, G.K. M. ,1986,“Relationship between Compacted Rockfill Density and Gradation”, Journal of Geotechnical Engineering, ASCE, Vol.11, No.12, pp.1119~1124. 20.陳正勳,何泰源,陳福勝,2008「卵礫石層潛盾隧道遭遇之最大卵石粒徑推估」,台灣世曦工程顧問公司。 21.工研院能資所(1995),「台中捷運初期路線路網地質與地層特性調查評估報告」,台灣省住都局。 22.湯福港,2011,「利用推進坑地質資料建立推進工程之三維地質模型-以台中市為例」,國立中興大學土木工程研究所。 23.鄭敏杰,2011,「以野外調查與分離元素法評估卵礫石層強度性質」,碩士論文,國立中興大學水土保持學系研究所。 24.林商裕,2001,「台中都會區卵礫石層動態特性之研究」,博士論文,中興大學土木工程研究所。 25.王錦洋,陈建荣,陈昕诠,2011,「潜盾机切刃盘于卵砾石层开挖之特性」,隧道建設,第31卷,增刊1-0388-06,pp.388~393。 26.Pellet ,A. L., Kastner, R., 2002, “Experimental and Analytical Study of Friction Force During Microtunneling Operations”, Tunneling and Underground Space Technology, Vol. 17, pp.83~97. 27.羅聖全,2005,「污水下水道推進施工管理對策與管線維護之探討」,碩士論文,國立臺灣海洋大學河海工程學系。 28.倪至寬,蔡諭璋,2008,「各種型式掘進機於卵礫石層掘進之探討」,臺灣公路工程 ,第34卷,第5期,pp.17~37。 29.Yagiz, S., 2008, “Utilizing Rock Mass Properties for Predicting TBM Performance in Hard Rock Condition”, Tunneling and Underground Space Technology, Vol.23, pp.326~339. 30.中國國家標準CNS486,2001,「粗細粒料篩析法」。 31.ISRM, 1981, “Rock Characterization Testing and Monitoring: ISRM Suggested Methods (Edited by E. T. Brown)”, pp.211. 32.Carle, S.F., Fogg, G.E., 1997, “Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains”, Mathematical Geology, Vol.29, No.7, pp.891~917. 33.Carle, S.F., Fogg, G.E., 1996, “Transition Probability-Based Indicator Geostatistics ”, Mathematical Geology, Vol. 28, No.4, pp.453~476. 34.Palisade, 2010, Distribution Fitting Commands, @RISK Risk Analysis and Simulation Add-In for MicrosoftR Excel, pp.275~294. 35.ESRI, 2010, Kriging (Spatial Analyst), ArcGIS Desktop Help.
摘要: 
台中市地質屬於卵礫石層,免開挖工程常面對地層中夾帶許多大小不一的卵礫石,因而施工機具容易耗損;甚至當切削刀磨損嚴重無法對遭遇大於切刃面盤開口之卵石進行破碎時,就須開挖障礙井進行處理,因而造成施工成本的增加及工期的延宕。因此,免開挖工程施工前若能瞭解卵礫石粒徑分佈,提供設計施工時的參考依據,進而做好推進長度之決定、切刃面盤之設計及施作前的各種參數調整,將可達到施工順利、節省成本等效益。
本研究透過空間統計分析方法針對台中市西北區,模擬該區卵礫石粒徑分佈情況,研究結果可作為後續未來工址粒徑分佈評估之用。此外,本研究根據免開挖工程實際案例,將卵礫石特性與推進率,進行單一變數之線性與二次多項式迴歸分析,迴歸分析結果顯示單壓強度(UCS)×累積通過百分比為60%的粒徑(D60)與推進率之R2最佳,故將單壓強度(UCS)與累積通過百分比為60%的粒徑(D60),進行多變量線性迴歸分析,求得預估推進率之公式。
本研究也針對台中地區某段免開挖工程之案例,就其穩定液黏滯度、含砂量與推進率迴歸分析;結果顯示當黏滯度愈高含砂量愈低,對於推進率有較佳的趨勢。此外本研究對此案例根據空間統計分析求得該工作井及到達井之各粒徑(大於20cm、介於2cm~20cm、小於2cm)所佔百分比,利用T-PROGS建立三維地質模型進而求取推進過程中,可能遭遇各粒徑之結果,並與每日平均推進率進行迴歸分析;結果顯示每日遭遇各粒徑之結果與每日平均推進率線性迴歸分析皆為正相關之趨勢,且每日遭遇大於20cm之粒徑變化趨勢與推進率有高度之關聯性。

Taichung area is covered by the gravel formations, therefore, the No-Dig construction often confronts gravel strata with various size of cobbles. This geologic condition makes the construction equipment easy to wear and with various sizes of cobbles. Serious wear of the cutter can be experienced such that the cobbles cannot be broken to the size of inlet. And the extra shaft has to be excavated to remove the obstacles and repair the cutter head, which results in the increase in construction cost and delay of duration. Therefore, if we can understand the particle size distribution of gravel in order to provide the reference for design and construction, a better decision can be made for the length of excavation, the design of cutter head, and the parameters for the facilities before No-Dig construction.
In this paper, the pipejacking cases in Taichung City were adopted for the analyses through spatial statistical analysis to simulate the area gravel particle size distribution, and the results can be used to estimate the particle size distribution. In addition, according to the No-Dig cases, gravel characteristics and advancing rate data were also analyzed by linear regression and quadratic polynomial regression. The regression analysis shows that uniaxial compressive strength multiplying cumulative percentage of 60% of the particle size and the advancing rate possesses a higher value of the square of correlation coefficient (R2). Therefore, this study apply the uniaxial compressive strength, cumulative percentage of 60% of the particle size to estimate the advancing rate and obtain a advancing rate predition formula.
A typical case in Taichung area is also analyzed in details for other parameters, such as viscosity and sand content of the driving fluids; The results of regression analysis of advancing rate shows that the lower the viscosity or the higher sand content, the better in the advancing rate. In addition, according to the spatial statistical analysis of the data obtained from the shafts (the particle size percentage of greater than 20cm, between 2cm to 20cm, less than 2cm). The results were applied to the T-PROGS geostatistic analysis to building a 3D geological model. We can then obtain the particle size distribution parameters along the pipe-jacking alignment and further applied for the regression analysis with average daily advance rate. The results show that the change of gravel particles larger than 20 cm is highly correlated with average daily advancing rate.
URI: http://hdl.handle.net/11455/10234
其他識別: U0005-2108201223273800
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.