Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10235
標題: Synthesis of SrTiO3 films on different morphologies and resistivities of TiN/Si by a hydrothermal- galvanic couple method
以水熱-化學電池法於不同表面形貌及電阻率之TiN/Si上製備SrTiO3膜之研究
作者: 林佳君
Lin, Chia-Chun
關鍵字: hydrothermal- galvanic couple method;低溫水熱-化學電池法;SrTiO3;TiN/Si;鈦酸鍶薄膜;氮化鈦薄膜
出版社: 材料科學與工程學系所
引用: 1 C. N. George, J. K. Thomas, R. Jose, H. Padma Kumar, M.K. Suresh,V. R. Kumar, P.R. S. Wariar, and J. Koshy, “Synthesis and characterization of nanocrystalline strontium titanate through a modified combustion method and its sintering and dielectric properties,” J. Alloys Compd. 486 (2009) 711. 2 A. K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, and N. Setter, “Ferroelectric Materials for Microwave Tunable Applications,” J. Electroceram. 11 (2006) 5. 3 J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, “Room-temperature ferroelectricity in strained SrTiO3,” Nature 430 (2004) 758. 4 張延平,電子陶瓷材料物化基礎,電子工業出版社,第四章:鈦和鈦的化合物, 第90頁,西元1996年。 5 M. Miyauchi, M. Takashio, and H. Tobimatsu, “Photocatalytic activity of SrTiO3 codoped with nitrogen and lanthanum under visible light illumination,” Langmuir 20 (2004) 232. 6 S. Burnside, J.E. Moser, K. Brooks, and M. Gratzel, “Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices: increasing photovoltage through flatband potential engineering,” J. Phys. Chem. B,103 (1999) 9328. 7 L. Pellegrino, I. Pallecchi, D. Marre, E. Bellingeri, and S. Siri, “Fabrication of submicron-scale SrTiO3-δ devices by an atomic force microscope,” Appl. Phys. Lett. 81 (2002) 3849. 8 R. E. Jones Jr., P. Zurcher, P. Chu, D. J. Taylor, Y. T. Lii, B. Jiang, P. D.Maniar, and S. J. Gillespie, “Memory applications based on ferroelectric and high-permittivity dielectric thin films,” Microelectron. Eng., 29 (1995)3. 9 K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, “Field effect transistors with SrTiO3 gate dielectric on Si,” Appl. Phys. Lett. 76 (2000) 1324. 73 10 H. Kawano, K. Morii, and Y. Nakayama, “Effects of crystallization on structural and dielectric properties of thin amorphous films of (1−x)BaTiO3–xSrTiO3 (x=0–0.5, 1.0),” J. Appl. Phys. 73 (1993) 5141. 11 P. Pasierb and S. Komornicki, “The influence of r.f. sputtering processing conditions on SrTiO3 thin films properties,” Opto-Electron. Rev. 2 (1994) 43. 12 B. W. Wessels, ‘‘Metal–Organic chemical vapor deposition of ferroelectric oxide thin films for electronic and optical applications,” Annu. Rev. Mater. Sci. 25 (1995) 525. 13 M. Iwabuchi, K. Kinoshita, H. Ishibashi, and T. Kobayashi, “Reduction of pinhole leakage current of SrTiO3 Films by ArF excimer Laser deposition with shadow mask (‘Eclipse Method’),” Jpn. J. Appl. Phys. Lett. 33 (1994) L610. 14 F. Niu and B.W. Wessels, “Surface and interfacial structure of epitaxial SrTiO3 thin films on (001)Si grown by molecular beam epitaxy,” J. Cryst. Growth 300 (2007) 509. 15 Q. J. Cai, Y. Gan, M. B. Chan-Park, H. B. Yang, Z. S. Lu, C. M. Li, J. Guo, and Z. L. Dong, “Solution-processable barium titanate and strontium titanaten nanoparticle dielectrics for low-voltage organic thin-film transistors,” Chem. Mater. 21 (2009) 3153. 16 Z. Wu, N. Kumagai and M. Yoshimura, “Hydrothermal formation and growth of single- and double-layer BaTiO3 and SrTiO3 films on the flexible polymer film substrates from sol-gel amorphous titanium oxide films,” Chem. Mater. 12 (2000) 33 56. 17 N. Ishizawa, H. Banno, M. Hayashi, S. E. Yoo, and M. Yoshimura, “Preparation of BaTiO3 and SrTiO3 polycrystalline thin films on flexible polymer film substrate by hydrothermal method,” J. Appl. Phys. 29 (1990) 2467. 18 汪建民,陶瓷技術手冊(下),中華民國粉末冶金協會,第二十三章:氮化物 (黃肇瑞),第777-804頁,民國八十三年。 19 D. R. Lide, CRC handbook of chemistry and physics, Baker & Tayl, (2007) p4-92 20 呂福興,余錦智,揭由志,詹佩諠,伍組聰,製備鈦酸鋇的方法,2006,中華 民國發明專利,證書證號 I261633。 21 呂福興,鄧煥平,揭由志,鋯酸鋇膜之製造方法,2010,中華民國發明專利, 證書證號 I321168。 22 K. Kajiyoshi, K. Tomono, Y. Hamaji, and T. Kasanami, “Contribution of electrolysis current to growth of SrTiO3 thin film by the hydrothermal- electrochemical method,” J. Mater. Res. 9 (1994) 2109. 23 W. L. Suchanek and M. Yoshimura, “Preparation of Strontium Titanate Thin Films by the Hydrothermal–Electrochemical Method in a Solution Flow System,” J. Am. Ceram. Soc. 81 (1998) 2864. 24 M. Yoshimura, W. L. Suchanek, T. Watanabe, and B. Sakurai, “In situ fabrication of SrTiO3-BaTiO3 layered thin films by hydrothermal-electrochemical technique,” J. Eur. Ceram. Soc. 19 (1999) 1353. 25 K. Kajiyoshi, K. Yanagisawa, and M. Yoshimura “Hydrothermal and electrochemical growth of complex oxide thin films for electronic devices,” J. Eur. Ceram. Soc. 26 (2006) 605. 26 P.-H. Chan and F.-H. Lu, “Low-temperature hydrothermal synthesis and the growth kinetics of BaTiO3 films on TiN/Si, Ti/Si, and bulk-Ti substrates,” J. Electrochem. Soc. 57 (2010) G130. 27 余錦智,“以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究”, 國立中興大學材料科學與工程學系碩士論文,(2005)。 28 Y.-C. Chieh, C.-C. Yu, and F.-H. Lu, “Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method,” Appl. Phys. Lett. 90 (2007) 032904 29 P.-H. Chan, Y.-C. Chieh, and F.-H. Lu, “Preparation of BaTiO3 Films on Ti/Si and Bulk-Ti by a Novel Low Temperature Hydrothermalgalvanic Couple Method,” J. Chin. Corr. Eng. 21 (2007) 291. 30 H.-P. Teng, Y.-C. Chieh, and F.-H. Lu, “Preparation of BaZrO3 films by physical vapor deposition and a novel hydrothermal duplex technique,” Thin Solid Films 516 (2007) 364. 31 H.-P. Teng, Y.-C. Chieh, and F.-H. Lu, “Synthesis of BaZrO3 Films on ZrN-coated Si by a Novel Low Temperature Hydrothermal-galvanic Couple Method,” J. Chin. Corr. Eng. 22 (2008) 73. 32 P.-H. Chan and F.-H. Lu, “Low-temperature hydrothermal–galvanic couple synthesis of BaTiO3 thin films on Ti-coated silicon substrates,” Thin Solid Films 517 (2009) 4782. 33 蔡迪佑,“以水熱-化學電池法於氮化鈦膜上製備鈦酸鋇膜及其成長動力學分 析”,國立中興大學材料科學與工程學系碩士論文,(2010)。 34 M. Wittmer and H. Melchior, “Applications of TiN thin films in silicon device technology,” Thin Solid Films, 93 (1982) 397-405 35 C. F. Windisch Jr., J. W. Virden, S. H. Elder, J. Liu, and M. H. Engelhard, J. Electrochem. Soc., 145 (1998) 1211.
摘要: 
本研究是以水熱-化學電池法於鍍導電氮化鈦之基材上製備鈦酸鍶薄膜。以0.1 M醋酸鍶及2 M 氫氧化鈉為電解液,探討氮化鈦底材之表面形貌與電阻率對製備薄膜之影響,並了解此薄膜在導電氮化鈦薄膜上之生長機制,驗證此水熱-化學電池法之效應。
以水熱-化學電池法在導電氮化鈦膜矽晶片基材上製備鈦酸鍶膜,由X光繞射儀分析結果,利用水熱-化學電池法可在低於100oC的環境下製備出具有與氮化鈦基材相同之(111)高優選結晶方向之鈦酸鍶膜。由場發射掃描式電子顯微鏡分析結果,可知鈦酸鍶膜是異質成核成長,由橫截面微結構變化結果顯示,隨反應時間增加鈦酸鍶膜厚度差異不大,皆生成一層鈦酸鍶膜。
將鈦酸鍶之生成量以覆蓋率的方式量化,藉由Modified Johnson- Mehl- Avrami- Erofe’ev equation方程式迴歸後,由成長動力學曲線可知以水熱-化學電池法製備鈦酸鍶膜較水熱法快,討論伽凡尼效應之作用及其生成機制,推測其機制可分成三部分,(Ⅰ)為氮化鈦溶解,此時電流、電壓及功率會漸減小,未有鈦酸鍶生成; (Ⅱ) 反應電流、電壓及功率逐漸變大,同時進行氮化鈦溶解與鈦酸鍶成核成長,此時之化學電池效應影響最明顯; (Ⅲ)化學電池效應減緩區間,此時化學電池效應減緩,電流、電壓及功率亦隨之減少趨近平緩,鈦酸鍶膜成長完成並停止,經由綜合分析比較可得反應功率是影響SrTiO3生成之最主要因素。在相同基材下反應溫度越高伽凡尼效應越顯著,可清楚發現利用水熱-化學電池法,可以明顯增加其成長速率,此確為一節能環保製程。
另探討不同表面形貌及電阻率之氮化鈦對鈦酸鍶膜之影響,可知角錐形狀之氮化鈦溶解速度較顆粒狀氮化鈦快,伽凡尼效應較顯著,可於較短時間便開始生成鈦酸鍶,且成長速率也較快;而相同角錐形貌,低電阻率氮化鈦之溶解速度較高電阻率氮化鈦,所生成之鈦酸鍶成長速率也較快。因此利用角錐狀、低電阻率之氮化鈦基材可以大幅增加鈦酸鍶膜之成長速率,有效縮短反應時間。

The object is to synthesize SrTiO3 films on TiN/Si by a hydrothermal– galvanic couple method. The alkaline reaction solution consisted of 0.1 M strontium acetate (Sr(CH3COO)2) and 2 M sodium hydroxide (NaOH). The effects of surface morphology and resistivity of the TiN seeding layer on the growth of SrTiO3 films as well as the growth mechanism were investigated. The hydrothermal -galvanic couple effect was also verified.
X-ray diffraction results confirmed that SrTiO3 films with high preferred orientation (111) were successfully prepared on (111) TiN/Si below 100℃ by a hydrothermal–galvanic couple method. Moreover, the surface morphology and thickness of obtained SrTiO3 films was investigated by field-emission scanning electron microscopy. The SrTiO3 films grew with heterogeneous nucleation and the obtained thickness was a single layer examined by cross-sectional analyses.
Hence, the coverage of SrTiO3 was fitted to the Johnson- Mehl- Avrami- Erofe'ev equation to analyze the growth kinetics in this work. It is confirmed that the growth rate of SrTiO3 by the hydrothermal-galvanic couple technique is faster than the hydrothermal technique. According to the experimental data, the growth mechanisms can be divided into three parts: (Ⅰ) Dissloution of TiN: Reaction current, voltage and power were gradually decreased. There was no SrTiO3 formed in this regime; (Ⅱ)Dissolution of TiN and growth of SrTiO3: Reaction current, voltage and power gradually increased. The galvanic effect can be observed learly; (Ⅲ) Growth of SrTiO3 film completed and stopped: Reaction current, voltage and power became stable. The galvanic effect decreased gradually. Above all, the most important factor to affect SrTiO3 grow is the reaction power. As reaction temperature increased, the galvanic effect is more remarkable by using the same substrate. It is clearly that the hydrothermal–galvanic couple method can significantly enhance the growth rate. This really is a green and energy-saving synthesizing technique. The effects of different surface morphology and resistivity of the TiN seeding layer on the growth of SrTiO3 films were discussed. The pyramidal morphology TiN dissolved faster and the galvanic effect was more obvious than the granular one. Moreover, large amount of SrTiO3 was produced by using the same pyramidal TiN with low resistivity. Thus, the growth rate of SrTiO3 was enhanced by using the pyramidal and low resistivity TiN seeding layer.
URI: http://hdl.handle.net/11455/10235
其他識別: U0005-2007201120442000
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.