Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10237
DC FieldValueLanguage
dc.contributor宋欣泰zh_TW
dc.contributor.author吳佳澤zh_TW
dc.contributor.authorWu, Jia-Tzaen_US
dc.contributor.other土木工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T06:44:35Z-
dc.date.available2014-06-06T06:44:35Z-
dc.identifierU0005-2708201315294300en_US
dc.identifier.citation[1] 黃文秀、宋欣泰、譚偉笠(2012年9月),基樁裸露橋墩之耐震能力與破壞機制,論文發表於由中華民國結構工程學會、中華民國地震工程學會與國立暨南國際大學土木工程學系共同舉辦之「中華民國第十一屆結構工程研討會暨第一屆地震工程研討會」,臺中。 [2] Melville, B. W., and Raudkivi, A. J. (1996).“Effects of Foundation Geometry on Bridge Pier Scour.”Journal of Hydraulic Engineering, ASCE, Vol.122, No.4, pp.203-209. [3] Melville, B. W. and Coleman, S. E. (2000). Bridge scour. Water Resources Publications, Colorado, USA. [4] Melville, B. W. (2002). “Local Scour Depth at Bridge Foundations : New Zealand Methodology.”First International Conference on Scour of Foundations, ICSF-1, pp.120-139. [5] 盧昭堯、林呈、王傳益(2005),河道深槽沖淤量測及預測模擬變化潛勢評估(3/3)(以濁水溪為研究案例),經濟部水利署水利規劃試驗所。 [6] 林詠彬、張國鎮、陳俊仲、吳信宏、李路生(2005),「光纖監測於橋樑沖刷安全之研發。」結構工程,第二十卷第一期,第111-124頁。 [7] 陳清泉、蔡益超、李鴻源、張國鎮、謝尚賢、李有豐、單信瑜(2005),河川橋樑沖刷並補強後之安全評估,交通部公路總局。 [8] 交通部技術標準規範公路類公路工程部(2008),公路橋樑耐震設計規範,台北:中華民國交通部。 [9] 周公台、胡邵源,’陳正興、張森源、鍾毓東(1998),建築技術規則建築構造編基礎構造設計規範(含解說),內政部建築研究所。 [10] 楊斯如(2003),學校建築結構耐震行為詳細評估,國立臺灣大學土木工程研究所碩士論文,蔡益超教授指導。 [11] Tsai, I-Chau and Chen, Yenhao (2006). “Seismic Capacity Evaluation of Bridge with Scoured Group Pile Foundations.”Proceedings, 4th International Conference on Earthquake Engineering, Taipei, Taiwan, No.053. [12] Shirato, M., Fukui, J. and Masui, N. (2003).“Ultimate Shear Strength of Pile Caps.”Proceedings, 19th US-Japan Bridge Engineering Workshop, Tsukuba, Japan. [13] Yamamoto, T., Yamada, K. and Okada, A. (2004).“Experiments on Shear-Flexural Behaviors of Model Cast in Place Concrete Piles.” Proceedings, 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada. [14] Yamamoto, T., Fukatsu, N. and Ban, Y. (2008).“Experimental Study on Semi-Rigid Pile Head Joints of Cast-in-Place Concrete Piles.”Proceedings, 14th World Conference on Earthquake Engineering, Beijing, China. [15] AASHTO, 2002, Standard Specifications for Highway Bridges, 17th Ed., and 2003 Interims, American Association of State Highway and Transportation Officials, Washington, DC. [16] California Department of Transportation (Caltrans), “California Amendments to AASHTO LRFD Bridge Design Specifications”, Fourth Edition, (2011) [17] 內政部營建署(2001),建築物基礎構造設計規範,中華民國大地工程學會。 [18] Chang, Y.L. (1937). Discussion on“Lateral Pile-Loading Tests”by L.B. Feagin, Trans., ASCE, Vol.102, pp.272~278 [19] Song, S.T. (2005). “Limit State Analysis and Performance Assessment of Fixed-Head Concrete Piles under Lateral Loading”, Ph.D. Thesis, University of California, Davis. [20] American Concrete Institute ACI-318 (2008). “Building Code Requirements for Structural Concrete and Commentary”, Farmington, Michigan. [21] American Petroleum Institute (API). (1993). API Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms. API Recommended Practice 2A(RP2A), Twentieth edition, Washington, D.C. [22] California Department of Transportation (Caltrans), (2006). Caltrans seismic design criteria. Sacramento:Caltrans. [23] FEMA , “NEHRP Recommended Provisions: for Seismic Regulations for New Buildings and Other Structures ”, 2003 Edition, (2003) [24] Song, S.T., and Chai, Y.H., “Performance assessment of multi-column bents with extended pile-shafts under lateral earthquake loads ”, The IES Journal A: Civil &Structural Engineering, 1(1), pp.39-54.(2008)en_US
dc.identifier.urihttp://hdl.handle.net/11455/10237-
dc.description.abstract本篇論文針對基樁的箍筋量不足且裸露問題嚴重之鋼筋混凝土橋樑進行研究,探討基樁裸露對於基礎剪力破壞行為之影響,便於日後基礎裸露橋樑耐震性能評估方法之發展。本篇論文建構數值模型來模擬基樁之行為,運用Mathematica數值分析軟體求其局部最大剪力發生的位置及其值,接著利用套裝分析軟體L-Pile來驗證Mathematica之分析結果。根據分析結果之比較及探討,發現Mathematica之模型不能模擬p-y curve之非線形行為,且會低估局部最大剪力的值,所以我們採用L-Pile之分析結果進行應用。應用分析之結果,可以得到基礎剪力側向強度與基樁裸露深度之關係;根據文獻[1]之分析過程,可以得到橋柱與基礎之撓曲側向強度及設計地震力與基樁裸露深度之關係;將本論文之模型進行上述的分析並對結果進行探討,可以得到以下之結論 (1)為了確保基礎的剪力側向強度高於基礎的撓曲側向強度,在樁頭附近之箍筋量是必須要依照鋼筋混凝土設計規範所規定,不應該擅自折減。 (2)雖然剪力破壞由樁頭剪力控制轉為局部最大剪力控制會造成基樁剪力側向強度下降,但是在我們的模型當中即使在沒有箍筋且基樁嚴重裸露達到八倍樁徑之情況下,此下降段之基樁剪力側向強度依然大於基樁撓曲側向強度。由此可以說明當基礎產生剪力破壞時,其破壞一般都是由樁頭剪力或D_rd處之剪力來控制,其破壞點都是在靠近樁頭的地方,很難產生由局部最大剪力控制之情形。 (3)不論如何改變設計反應譜之最大地表加速度(PGA),皆找不到由橋柱撓曲降伏轉為基樁剪力破壞之臨界裸露深度。因此,橋柱撓曲降伏一定比基樁剪力破壞早發生。zh_TW
dc.description.abstractThe primary goal of this study is to discuss the changing of pile’s shear failure behavior due to pile exposure . This paper built a numerical model to simulate the behavior of laterally loaded piles by solving the governing equation. The location and magnitude of the local maximum shear are obtained from the numerical solution, and then verified by the commercial software L-Pile. Through the comparison, we found that the numerical model was not able to simulate the nonlinear behavior of p-y curve, and may underestimate the value of local maximum shear. Consequently, the results obtained from the software L-Pile is used to find the relation between pile exposure depth and foundation’s shear lateral capacity. Additionally, we obtained the relation among pile exposure depth, lateral forces required to cause flexural yielding in the bridge column and foundation, and design level seismic demand on bridge column and foundation using the procedure presented earlier. The comparison leads to the following conclusion: (1)The lateral strength of the pile reduces with increasing the scour depth. In order to prevent the brittle shear failure, the reduction of transverse reinforcement near pile head should be carefully evaluated. (2) The results from the illustrated example shows that even in the situation with great pile exposure depth, foundation’s shear lateral capacity controlled by local maximum shear is still bigger than foundation’s flexural lateral capacity. It suggests that carefully detailing the pile reinforcement is important to prevent undesirable shear failure. (3)No matter what peak ground acceleration you used in design spectrum, it is impossible to find the critical pile exposure depth between bridge column’s flexural behavior and pile’s shear failure behavior in our model. It can be seen that bridge column’s flexural yielding always occur sooner than pile’s shear failure.en_US
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii 目錄 iv 表目錄 vi 圖目錄 vii 符號表 ix 第一章 緒論 1 第一節 前言 1 第二節 研究目的 2 第三節 文獻回顧 2 第四節 論文大綱 4 第二章 研究方法 5 第一節 剪力分佈變化情形 5 第二節 樁頭最大剪力-基樁裸露深度關係圖 7 第三節 基礎剪力側向強度-基樁裸露深度關係圖 14 第四節 小節 15 第三章 Mathematica數值模擬 16 第一節 Mathematica簡介 16 第二節 數值模型之建構 16 第三節 數值模型之分析 18 第四節 分析結果 21 第四章 L-Pile分析 25 第一節 L-Pile簡介 25 第二節 相關參數之設定 25 第三節 分析結果 27 第五章 分析結果之探討及應用 28 第一節 Mathematica與L-Pile分析結果之比較 28 第二節 分析結果差異原因之探討 28 第三節 分析結果之應用 33 第六章 耐震性能改變之探討 44 第一節 基樁裸露橋樑之撓曲側向強度與設計地震力 44 第二節 基礎之撓曲側向強度與剪力側向強度 48 第三節 探討樁身產生剪力破壞之可能性 51 第七章 結論與建議 54 第一節 結論 54 第二節 建議 55 參考文獻 56 附錄一 Mathematica程式 59 附錄二 XTRACT分析報告 63zh_TW
dc.language.isozh_TWen_US
dc.publisher土木工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2708201315294300en_US
dc.subject基樁裸露zh_TW
dc.subjectpile exposureen_US
dc.subject剪力破壞zh_TW
dc.subject耐震性能zh_TW
dc.subjectshear failureen_US
dc.subjectseismic performanceen_US
dc.title受側向力之裸露橋樑基礎剪力破壞探討zh_TW
dc.titleShear Failure of Laterally Load Bridge Foundation with Pile Exposureen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:土木工程學系所
Files in This Item:
File SizeFormat Existing users please Login
nchu-102-7100062125-1.pdf5.09 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.