Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10240
標題: 可重設變勁度調諧質量阻尼器之結構減震
Control Effectiveness of Resettable Variable Stiffness Tuned Mass Damper for Seismic Structures
作者: 陳柏誠
Chen, Bo-Cheng
關鍵字: 調諧質量阻尼器(TMD);tuned mass damper;可變勁度機構;可重設機構;離頻效應;半主動控制;variable stiffness;resettable device;detuning effect;semi-active control
出版社: 土木工程學系所
引用: Abe, M. and Fujino,Y. (1994) Dynamic characterization of multipla tuned mass dampers and some design formulas, Earthquake Engineering and Structural Dynamics, 23: 813-835. Abe, M. (1996) Semi-active tuned mass dampers for seismic protection of civil structures. Earthquake Engineering and Structural Dynamics; 25(7): 743-749. Aldemir U. (2003) Optimal control of structures with semi-active tuned mass dampers. Journal of Sound and Vibration; 266(4): 847-874. Bakre, S. V.and Jangid, R. S. (2007) Optimum parameters of tuned mass damper for damped main system. Structural Control and Health Monitoring , 14(3): 448-470. Cai, C. S.,Wu, W. J. and Araujo, M. (2007) Cable vibration control with a TMD-MR damper system: experimental exploration, Journal of Structural Engineering (ASCE) ; 133(5): 629-637. Chang, M. L., Lin, C. C., Ueng, J. M., Hsieh, K. H. and Wang, J. F. (2010) Experimental study on adjustable tuned mass damper to reduce floor vibration due to machinery, Structural Control and Health Monitoring, 17(5): 532-548. Chase, J. G. et. al. (2006) Re-shaping hysteretic behavior using semi-active resettable device dampers, Engineering Structures, 28: 1418–1429. Chey, M. H., Chase, J. G., Mander, J.B., Carr, A.J. (2010a) Semi-active tuned mass damper building systems: Design, Earthquake Engineering and Structural Dynamics, 39(2): 119-139. Chey, M. H., Chase, J. G., Mander, J.B., Carr, A.J. (2010b) Semi-active tuned mass damper building systems: Application, Earthquake Engineering and Structural Dynamics, 39(1): 69-89. Chung, L. L., Lin, C. C. and Chu, S. Y. (1993) Optimal direct output feedback of structural control. Journal of Engineering Mechanics (ASCE); 119(11):2157–2173. Chu, S. Y., Lin, C. C., Chung, L. L., Chang, C. C. and Lu, K.H. (2008) Optimal performance of discrete-time direct output feedback structural control with delayed control forces, Structural Control and Health Monitoring; 5(1): 20-42. Connor, J. J. (2003) Introduction to Structural Motion Control, Prentice Hall. Den Hartog, J. P. (1947). Mechanical Vibrations, 3rd Edition, Mc Graw-Hill, New York. Frahm,H. (1911), Device for damping vibration, 4th edition, McGraw-Hill, New York. Hoang, N., Fujino, Y. and Warnitchai, P. (2008) Optimal tuned mass damper for seismic applications and practical design formulas. Engineering Structures; 30(3): 707-715. Housner, G. W., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., Skelton, R. E., Soong, T. T., Spencer Jr, B. F. and Yao, T. P. (1997) Structural control: past, present and future, Journal of Engineering Mechanics (ASCE), 123(9): 897-971. Igusa, T. and Xu, K. (1994) Vibration control using multiple tuned mass dampers, Journal of Sound and Vibration, 175: 491-503. Jangid, R. S. (1999) Optimal multiple tuned mass dampers for base-excited un-damped system, Earthquake Engineering and Structural Dynamics, 28: 1041-1049. Kobori T, Takahashi M, Nasu T, Niwa N, Hiehata J, Ogasawara K. (1993) Seismic response controlled structure with active variable stiffness system, Earthquake Engineering and Structural Dynamics, 22: 925–941. Kurata, N., Kobori, T., Takahashi, M., Ishibashi, T., Niwa, N., Tagami, J. and Midorikawa, H. (2000)Forced vibration test of a building with semi-active damper system, Earthquake Engineering and Structural Dynamics, 29: 629-645. Leung, A. Y. T. and Zhang, H. (2009) Particle swarm optimization of tuned mass dampers, Engineering Structures, 31(3): 715-728. Lin, C. C., Soong, T. T., Reinhorn, A. M., Lai, M. L., Park, S. Y., Naidu, H., Soom, A., Lee, Y. H., Demjanenko, V., Benenson, D., Wright, S. E. (1989) Machine Diagnostics by Inverse Filtering Techniques, In Proceedings of the First International Machinery Monitoring and Diagnostics Conference, pp. 155-160, Las Vegas, Nevada, U.S.A. Lin, C. C., et al. (1990) Method and Apparatus for Diagnostics the State of a Machine, United State Patent No. 4-980-844. Lin, C. C., Hu, C. M., Wang, J. F. and Hu, R. Y. (1994) Vibration control effectiveness of passive tuned mass dampers, Journal of the Chinese Institute of Engineers, 17(3): 367-376. Lin, C. C., Ueng, J. M. and Huang, T. C. (2000) Seismic response reduction of irregular buildings using passive tuned mass dampers, Engineering Structures, 22(5): 513-524. Lin, C. C., Wang, J. F. and Ueng, J. M. (2001) Vibration control identification of seismically-excited MDOF structure-PTMD systems, Journal of Sound and Vibration, 240(1): 87-115. Lin, C. C. and Wang, J. F. (2005) Parallel multiple tuned mass dampers, Knowledge Bridge, 60(6): 1-2. Lin, C. C., Wang, J. F. and Chen, B. L. (2005) Train-induced vibration control of high-speed railway bridges equipped with multiple tuned mass dampers”, Journal of Bridge Engineering (ASCE), 10(4): 398-414. Lin, C. C., Lin, G. L., Wang, J. F. (2010a) Protection of seismic structures using semi-active friction TMD, Earthquake Engineering and Structural Dynamics, 39(6): 635-659. Lin, C. C., Chen, C. L. and Wang, J. F. (2010b) Vibration control of structures equipped with passive tuned mass dampers under near-fault earthquake excitation, Computer-Aided Civil and Infrastructure Engineering, 25(1): 69-75. Lin, C. C., Wang, J. F., Lien, C. H., Chiang, H. W. and Lin, C. S. (2010c) Optimum design and experimental study of multiple tuned mass dampers with limited stroke, Earthquake Engineering and Structural Dynamics, 39(14): 1632-1651. Lin, C. C., Lu, L. Y., Lin, G. L., Yang, T. W. (2010d) Vibration control of seismic structures using semi-active friction multiple tuned mass dampers, Engineering Structures, 32(10): 3404-3417. Lin, G. L., Lin, C. C., Lu, L. Y. and Ho, Y. B. (2012) Experimental verification of seismic vibration control using semi-active friction tuned mass damper. Earthquake Engineering and Structural Dynamics, 41(4): 813-830. Loh, C. H., Wu, L. Y. and Lin, P. Y. (2003) Displacement control of isolated structures with semi-active control devices, Journal of Structural Control, 10(2): 77-100. Lu, L. Y. (2004) Predictive control of seismic structures with semi-active friction dampers, Earthquake Engineering and Structural Dynamics, 33(5): 647-668. Lu, L. Y., Chung, L. L., Lin, G. L. (2004) A general method for semi-active feedback control of variable friction dampers, Journal of Intelligent Material Systems and Structures, 15(5): 393-412. Lu, L. Y., Chung, L. L. Wu, L. Y. and Lin, G. L. (2006) Dynamic analysis of structures with friction devices using discrete-time state-space formulation. Computers and Structures; 84(15-16): 1049-1071. Lu, L. Y., Lin, G. L. and Kuo, T. C. (2008) Stiffness controllable isolation system for near-fault seismic isolation. Engineering Structures; 30(3): 747-765. Lu, L. Y. and Lin, G. L. (2009) Improvement of near-fault seismic isolation using a resettable variable stiffness damper. Engineering Structures; 31(9): 2097-2114. Lu, L. Y., Lin, T. K. and Yeh, S. W. (2010) Experiment and analysis of a leverage-type stiffness controllable isolation system for seismic engineering, Earthquake Engineering and Structural Dynamics, 39(15): 1711-1736. Lu, L. Y., Chu, S. Y., Yeh, S. W. and Peng, C. H. (2011) Modeling and experimental verification of a variable-stiffness isolation system using leverage mechanism. Journal of Vibration and Control, 17(12): 1869-1885. Lu, L. Y., Chu, S. Y., Yeh, S. W. and Chung, L. L. (2012) Seismic test of least-input-energy control with ground velocity feedback for variable-stiffness isolation systems. Journal of Sound and Vibration, 331(4): 767-784. Meirovitch, L. (1990) Dynamics and Control of Structures, John Wiley & Sons. Nagarajaiah, S. and Varadarajan, N. (2005) Short time Fourier transform algorithm for wind response control of buildings with variable stiffness TMD, Engineering Structures, 27(3): 431-441. Nagarajaiah, S. and Sahasrabudhe, S. (2006) Seismic response control of smart sliding isolated buildings using variable stiffness systems: An experimental and numerical study. Earthquake engineering and structural dynamics; 35(2): 177-197. Nagarajaiah, S. and Sonmez, E. (2007) Structures with semi-active variable stiffness single/multiple tuned mass dampers, Journal of Structural Engineering (ASCE), 133(1): 67-77. Nagarajaiah, S. (2009) Adaptive passive, semi-active, smart tuned mass dampers: Identification and control using empirical mode decomposition, Hilbert transform, and short-term Fourier transform, Structural Control and Health Monitoring ; 16(7-8): 800-841. Narasimhana, S. and Nagarajaiah, S. (2005) A STFT semi-active controller for base isolated buildings with variable stiffness isolation systems, Engineering Structures, 27(3): 514–523. Niwa, N., Kobori, T., Takahashi, M., Midoridawa, H., Kurata, N. and Mizuno, T. (2000)Dynamic loading test and simulation analysis of full-scale semi-active hydraulic damper for structural control, Earthquake Engineering and Structural Dynamics, 29: 789-812. Sadek, F., Mohraz, B., Taylor, A. W. and Chung, R. M. (1997) Method of estimating the parameters of tuned mass dampers for seismic applications, Earthquake Engineering and Structural Dynamics, 26(6): 617-635. Sahasrabudhe, S. S. and Nagarajaiah, S. (2005) Semi-active control of sliding isolated bridges using MR dampers: an experimental and numerical study, Earthquake Engineering and Structural Dynamics, 34:.965-983. Soong, T.T.,Spencer, B. F. Jr. (2002) Supplemental energy dissipation: State-of-the-art and state-of-the-practice. Engineering Structures, 24(3): 243-259 Spencer, B. F. Jr., Dyke, S. J., M. K. and Sain Carlson, J. D. (1997) Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics (ASCE), 123(3): 230-238. Spencer, B. and Nagarajaiah, S. (2003) State of the art of structural control. Journal of Structural Engineering (ASCE); 129(7): 845-856. Symans, M. D and M. C. Constantinou (1997) Seismic testing of a building structure with a semi-active fluid damper control system, Earthquake Engineering and Structural Dynamics, 26: 759-777. Symans, M. D. and Constantinou, M. C. (1999) Semi-active control systems for seismic protection of structures: a state-of-the-art review, Engineering Structures, (21): 469-487. Ueng, J. M., Lin, C. C. and Wang, J. F. (2008) Practical design issues of tuned mass dampers for torsionally- coupled buildings under earthquake loadings, Structural Design of Tall and Special Buildings, 17(3): 133-165. Warburton, G. B. (1982) Optimum absorber parameters for various combinations of response and excitation parameters, Earthquake Engineering and Structural Dynamics, 10(3): 381-401. Wang, Y. P., Chung, L. L. and Liao W. H. (1998) Seismic response analysis of bridges isolated with friction pendulum bearings, Earthquake Engineering and Structural Dynamics, 27(10):1069-1093. Wang, J. F. Lin, C. C. and Chen, B. L. (2003) Vibration suppression for high speed railway bridges using tuned mass dampers”, International Journal of Solids and Structures, 40(2): 465-491. Wang, J. F. and Lin, C. C. (2005) Seismic performance of multiple tuned mass dampers for soil-irregular building interaction systems, International Journal of Solids and Structures, 42(20): 5536-5554. Wang, J.F., Lin, C. C., Lien, C. H. (2009) Two-stage optimum design of tuned mass dampers with consideration of stroke. Structural Control and Health Monitoring , 16(1): 55-72. Xu, K. and Igusa, T. (1992) Dynamic characteristics of multiple substructures with closely spaced frequencies, Earthquake Engineering and Structural Dynamics, 21: 1059-1070. Xu, Y. L., Qu, W. L. and Chen, Z. H. (2001) Control of wind-excited truss tower using semi-active friction damper, Journal of Structural Engineering (ASCE), 127(8): 861-868. Yamaguchi, H. and Harnpornchai, N. (1993) Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations, Earthquake Engineering and Structural Dynamics, 22: 51-62. Yang, J. N., Kim, J. H. and Agrawal, A. K. (2000) Resetting semi active stiffness damper for seismic response control, Journal of Structural Engineering (ASCE), 126(12): 1427-1433. Yang, J. N. and Agrawal, A. K. (2002) Semi-active hybrid control systems for nonlinear building against near-fault earthquakes, Engineering Structures, 24(3): 271-280. Yang, J. N., Bobrow, J., Jabbari, F., Leavitt, J., Cheng, C. P. and Lin, P. Y. (2007) Full-scale experimental verification of resettable semi-active stiffness dampers, Earthquake Engineering and Structural Dynamics, 36: 1255–1273. Zivanovic S., Pavic A. and Reynolds P. (2005) Vibration serviceability of footbridges under human-induced excitation: A literature review. Journal of Sound and Vibration, 279(1-2): 1-74. 王哲夫 (1993),被動調諧質量阻尼器之最佳設計暨應用,國立中興大學土木工程研究所碩士論文。 何玉泊 (2010),半主動摩擦調諧質量阻尼器之振動台試驗與減振分析,國立中興大學土木工程研究所碩士論文。
摘要: 
調諧質量阻尼器(Tuned Mass Damper, TMD)係為一具有特定頻率與阻尼之單自由度系統。利用調頻共振之原理,可將結構物所承受之部份振動能量轉移至TMD,並由其阻尼耗散消除,藉此達到降低主結構動態反應之目的。而線性TMD之最佳化理論發展已臻成熟,但非線性TMD之研究仍在發展階段。而傳統TMD系統主要包含以下兩個問題:(1) 離頻效應,(2) 衝程過大。因此本研究提出一新型半主動TMD,稱之為「可重設變勁度TMD」,簡稱RVS-TMD (Resettable variable stiffness TMD),即為非線性TMD之一種。此型半主動TMD是由可重設之可變勁度機構RVSD (Resettable variable stiffness device)與TMD所組成。其中,RVSD是由可變彈簧元件與可重設元件所組成,藉由半主動控制律求得之控制力,即時調整可變彈簧之勁度,於離頻效應發生時調諧TMD頻率,避免離頻效應發生;可重設元件則可於適當時機進行重設,因此遲滯迴圈可涵蓋四個象限,進而提高RVS-TMD之消能效果,並能有效降低TMD衝程。本研究採用數值分析方法以評估可重設變勁度TMD系統之減振效能,並與不同類型半主動TMD系統比較。本文研究結果顯示,RVS-TMD系統之減振效果非常接近主動TMD,且能夠減少離頻效應與降低TMD衝程。

A Tuned Mass Damper (TMD) system consists of an added mass with properly functioning spring and damping elements that provide frequency-dependent damping in a primary structure. By attaching a TMD to a structure, vibration energy of the structure can be transferred to the TMD and dissipated via the damping mechanism in the TMD. Although the design and application of traditional linear TMD systems are well developed, nonlinear TMD systems that may lead to better control performance are still in the developmental stage. There are two main problems associated with TMD systems, i.e. (1) detuning effect, (2) excessive stroke of TMD. In order to improve the performance of TMD systems, a novel semi-active TMD named resettable variable stiffness TMD (RVS-TMD) is proposed in this study. The RVS-TMD consists of a TMD and a resettable variable stiffness device (RVSD). The RVSD composed of a resettable element and a controllable stiffness element. By varying the stiffness element of the RVSD, the force produced by the RVSD can be controlled smoothly through a semi-active control law. By resetting the resettable element, the hysteresis loop of the RVSD can cover all four quadrants in the force-deformation diagram and thus results in more energy dissipation. In this study, RVS-TMD system is compared with different types of TMD systems by numerical method. The results show that the control performance of RVS-TMD system can be very close to those of active TMD, and is able to alleviate detuning effect and reduce TMD’s stroke.
URI: http://hdl.handle.net/11455/10240
其他識別: U0005-2408201212201100
Appears in Collections:土木工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-101-7099062030-1.pdf1.8 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.