Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10242
標題: Structure, mechanical properties and high temperature oxidation of Ti-Si-N and Ti-Al-Si-N thin films synthesized by a cathodic arc deposition process
陰極電弧沉積Ti-Si-N與Ti-Al-Si-N薄膜之顯微結構、機械性質與高温氧化之研究
作者: Yang, Sheng-Min
楊勝閔
關鍵字: Ti-Si-N;Ti-Si-N;Ti-Al-Si-N;cathodic arc evaporation system;Nanocomposite;Superhard coating;Ti-Al-Si-N;陰極電弧沉積系統;奈米複合薄膜;超硬薄膜
出版社: 材料科學與工程學系所
引用: [001] A. Raveh, I. Zukerman, R. Shneck, R. Avni, and I. Fried, “Thermal stability of nanostructured superhard coatings: A review”, Surface and Coatings Technology, Vol. 201, pp.6136-6142, 2007. [002] S. Vepřek, M.G.J. Veprek-Heijman, P. Karvankova, and J. Prochazka, “Different approaches to superhard coatings and nanocomposites”, Thin Solid Films, Vol. 476, pp. 1-29, 2005. [003] S. Vepřek, M. Haussmann, S. Reiprich, Li Shizhi, and J. Dian, “Novel thermodynamically stable and oxidation resistant superhard coating materials”, Surface and Coatings Technology, Vol. 86-87, pp. 394-401, 1996. [004] S. Vepřek, “Conventional and new approaches towards the design of novel superhard materials”, Surface and Coatings Technology, Vol. 97, pp. 15-22, 1997. [005] P. Hammer, A. Steiner, R. Villa, M. Baker, P. N. Gibson, J. Haupt, and W. Gissler, “Titanium boron nitride coatings of very high hardness” , Surface and Coatings Technology, Vol. 68-69, pp. 194-198, 1994. [006] C. Mitterer, P. H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P. N. Gibson, W. Gissler, H. Hruby, J. Musil, and J. Vlček, “Microstructure and properties of nanocomposite Ti-B-N and Ti-B-C coatings”, Surface and Coatings Technology, Vol. 120-121, pp. 405-411, 1999. [007] P. H. Mayrhofer, C. Mitterer, J. G. Wen, J. E. Greene, and I. Petrov, “Self-organized nanocolumnar structure in superhard TiB2 thin films”, Applied Physics letters, Vol. 86, pp. 131909-131911, 2005. [008] T. Ikeda and H. Satoh, “Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method”, Thin Solid Films, Vol. 195, pp. 99-110, 1991. [009] A. Kimura, H. Hasegawa, K. Yamada, and T. Suzuki, “Effects of Al content on hardness, lattice parameter and microstructure of Ti1−xAlxN films”, Surface and Coatings Technology, Vol. 120-121, pp. 438-441, 1999. [010] Y. Tanaka, T. M. Gür, M. Kelly, S. B. Hagstrom, T. Ikeda, K. Wakihira, and H. Satoh, “Properties of (Ti1-xAlx)N coatings for cutting tools prepared by the cathodic arc ion plating method”, Journal of Vacuum Science and Technology A, Vol. 10, pp. 1749-1756, 1992. [011] D.T. Quinto, G.J. Wolfe, and P. C. Jindal, “High Temperature microhardness of hard coatings produced by physical and chemical vapor deposition”, Thin Solid Films, Vol. 153, pp. 19-36, 1987. [012] E. Vancoille, J. P. Celis, and J. R. Roos, “Mechanical properties of heat treated and worn PVD TiN, (Ti, Al)N, (Ti, Nb)N and Ti(C, N) coatings as measured by nanoindentation”, Thin Solid Films, Vol. 224, pp. 168-176, 1993. [013] S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. Jílek, and M. Šíma, “Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness”, Surface and Coatings Technology, Vol. 108-109, pp. 138-147, 1998. [014] A. Niederhofer, P. Nesládek, H. -D. Männling, K. Moto, S. Vepřek, and M. Jílek, “Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1−yAlySix)N superhard nanocomposite coatings reaching the hardness of diamond”, Surface and Coatings Technology, Vol. 120-121, pp. 173-178, 1999. [015] D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes,, New Jersey, 1998. [016] R. L. Boxman, D.M. Sanders, P.J. Martin, J.M. Lafferty, Handbook of Vacuum Arc Science and Technology, Noyes, New Jersey, 1995. [017] P.J. Martin, R.P. Netterfield and T.J. Kinder, “Ion-beam-deposited films produced by filtered arc evaporation”, Thin Solid Films, Vol. 193-194, pp. 77-83, 1990. [018] A. Flink, T. Larsson, J. Sjölén, L. Karlsson, and L. Hultman, “Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films; evidence for cubic solid solutions and their thermal stability”, Surface and Coatings Technology, Vol. 200, pp. 1535-1542, 2005. [019] M. Ohring, Materials science of thin films : deposition and structure, Academic Press, California, 2002. [020] C.R.M. Grovenor, H.T.G. Hentzell, and D.A. Smith, “The Development of Grain Structure During Growth of Metallic Films”, Acta Metallurgica, Vol. 32, pp. 773-, 1984. [021] J.A. Thorton and D.W. Hoffman, “Stress-related effects in thin films”, Thin Solid Films, Vol. 171, pp. 5-31, 1989. [022] S. Hogmark, S. Jacobson, and M. Larsson, “Design and evaluation of tribological coatings”, Wear, Vol. 246, pp. 20-33, 2000. [023] N. Dingremont, E. Bergmann, and P. Collignon, “Application of duplex coatings for metal injection moulding”, Surface and Coatings Technology, Vol. 72, pp. 157-162, 1995. [024] N. Dingremont, E. Bergmann, P. Collignon, and H. Michel, “Optimization of duplex coatings built from nitriding and ion plating with continuous and discontinuous operation for construction and hot working steels”, Surface and Coatings Technology, Vol. 72, pp. 163-168, 1995. [025] E. Bergmann, H. Kaufmann, R. Schmid, and J. Vogel, “Ion-plated titanium carbonitride films”, Surface and Coatings Technology, Vol. 42, pp. 273-251, 1990. [026] Y. Sugimura, P.G. Lim, C.F. Shih, and S. Suresh, “Fracture normal to a bimaterial interface: Effects of plasticity on crack-tip shielding and amplification”, Acta Metallurgica et Materialia, Vol. 43, pp. 1157-1169, 1995. [027] T. I. Selinder, M. E. Sjöstrand, M. Nordin, M. Larsson, Å. Östlund, S. Hogmark, “Performance of PVD TiN/TaN and TiN/NbN superlattice coated cemented carbide tools in stainless steel machining”, Surface and Coatings Technology, Vol. 105, pp. 51-55, 1998. [028] H. Holleck and V. Schier, “Multilayer PVD coatings for wear protection”, Surface and Coating Technology, Vol. 76-77, pp. 328-336, 1995. [029] H.Holleck, “Material selection for hard coatings”, Journal of Vacuum Science and Technology A, Vol. 4, pp. 2661-2669, 1986. [030] M. Nordin, R. Sundström, T. I. Selinder, and S. Hogmark, “Wear and failure mechanisms of multilayered PVD TiN/TaN coated tools when milling austenitic stainless steel”, Surface and Coatings Technology, Vol. 133-134, pp. 240-246, 2000. [031] S. Ulrich, C. Ziebert, M. Stüber, E. Nold, H. Holleck, M. Göken, E. Schweitzer, and P. Schloßmacher, “Correlation between constitution, properties and machining performance of TiN/ZrN multilayers”, Surface and Coatings Technology, Vol. 188-189, pp. 331-337, 2004. [032] J. H. Hsieh, C. Liang, C. H. Yu, and W. Wu, “Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings using unbalanced magnetron sputtering”, Surface and Coatings Technology, Vol. 108-109, pp. 132-137, 1998. [033] Q. Luo, P.Eh. Hovsepian, D.B. Lewis, W.D. Münz, Y.N. Kok, J. Cockrem, M. Bolton, and A. Farinotti, “Tribological properties of unbalanced magnetron sputtered nano-scale multilayer coatings TiAlN/VN and TiAlCrYN deposited on plasma nitrided steels”, Surface and Coatings Technology, Vol. 193, pp. 39-45, 2005. [034] M. Berger, U. Wiklund, M. Eriksson, H. Engqvist, and S. Jacobson, “The multilayer effect in abrasion — optimising the combination of hard and tough phases”, Surface and Coatings Technology, Vol. 193, pp. 1138-1144, 1999. [035] Q. Yang, D. Y. Seo, and L. R. Zhao, “Multilayered coatings with alternate pure Ti and TiN/CrN superlattice”, Surface and Coatings Technology, Vol. 177-178, pp. 204-208, 2004. [036] C. J. Tavares, L. Rebouta, E. Alves, A. Cavaleiro, P. Goudeau, J. P. Rivière, and A. Declemy, “A structural and mechanical analysis on PVD-grown (Ti,Al)N/Mo multilayers”, Thin Solid Films, Vol.377-378, pp. 425-429, 2000. [037] A. A. Voevodin, S. D. Walck, and J. S. Zabinski, “Architecture of multilayer nanocomposite coatings with super-hard diamond-like carbon layers for wear protection at high contact loads”, Wear, Vol.203-204, pp. 516-527, 1997. [038] S. Zhang, D. Sun, Y. Fu, and H. Du, “Toughening of hard nanostructural thin films: a critical review”, Surface and Coatings Technology, Vol. 198, pp. 2-8, 2005. [039] S. Vepřek and S. Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films, Vol. 268, pp. 64-71, 1995. [040] N. Jiang, Y. G. S., Y. W. Mai, T, Chan, and Simon C. Tung, "Nanocomposite Ti-Si-N films deposited by reactive unbalanced magnetron sputtering at room temperature." Materials Science and Engineering B, Vol. 106, pp.163-171, 2004. [041] M. Nose, W. A. Chiou, M. Zhou, T. Mae, and M. Meshii, “Microstructure and mechanical properties of Zr-Si-N films prepared by rf-reactive sputtering”, Journal of Vacuum Science and Technology A, Vol. 20, pp. 823-828, 2002. [042] X. Hu, Z. Han, G. Li, and M. Gu, “Microstructure and properties of Ti-Si-N nanocomposite films”, Journal of Vacuum Science and Technology A, Vol. 20, pp. 1921-1926, 2002. [043] S. Vepřek and M.G.J. Veprek-Heijman, “The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites”, Surface and Coatings Technology, Vol. 201, pp. 6064-6070, 2007. [044] R.F. Zhang and S. Vepřek, “On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti-Si-N system”, Materials Science and Engineering A, Vol. 424, pp. 128-137, 2006. [045] J. Musil, “Hard and superhard nanocomposite coatings”, Surface and Coatings Technology, Vol. 125, pp. 322-330, 2000. [046] J.S. Koehler, “Attempt to design a strong solid”, Physical Review B, Vol. 2, pp. 547-551, 1970. [047] S. Vepřek and M. Jilek, “Super- and ultrahard nanacomposite coatings: generic concept for their preparation, properties and industrial applications”, Vacuum, Vol. 67, pp. 443-449, 2002. [048] W.C. Oliver and G.M. Pharr,“An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials of Research, Vol. 7, pp. 1564-1583, 1992. [049] K. Holmberg and A. Matthews, Coatings Tribology, Elsevier, Nerherlands,1994. [050] G. K. Williamson, W. H. Hall, “X-ray line broadening from filed aluminium and wolfram”, Acta Metallurgica, Vol. 1, pp. 22-31, 1953. [051] V. Valvoda, R. Kužel, Jr. and R. Černý,“Structure of TiN coatings deposited at relatively high rates and low temperatures by magnetron sputtering”, Thin Solid Films, Vol. 156, pp. 53-64, 1988. [052] B.S. Yau, J.L. Huang, D.F. Lii, and P. Sajgalik,“Investigation of nanocrystal-(Ti,Al)Nx/amorphous-SiNy composite films by co-deposition process”, Surface and Coatings Technology, Vol. 177-178, pp. 209-214, 2004. [053] C.H. Ma, J.H. Huang, H. Chen,“Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction”, Thin Solid Films, Vol. 418, pp. 73-78, 2002. [054] F. I. Boley, Plasmas, laboratory and cosmic, Princeton, New Jersey, 1966 [055] J. Bujak, J. Walkowicz, and J. Kusinski, “Influence of the nitrogen pressure on the structure and properties of (Ti,Al)N coatings deposited by cathodic vacuum arc PVD process”, Surface and Coatings Technology, Vol. 180-181, pp. 150-157, 2004. [056] A. Grill, Cold plasma in materials fabrication, IEEE Press, New York, 1994. [057] M.J. Jung, Y.M. Kim, Y.M. Chung, S.H. Ahn, J.G. Kim, and J.G. Han, “Deposition of TiN thin films using grid-assisting magnetron sputtering”, Thin Solid Films, Vol. 475, pp. 323-326, 2005. [058] E. Kusano, T. Kobayashi, N. Kashiwagi, T. Saitoh, S. Saiki, H. Nanto, and A. Kinbara, “Ion energy distribution in ionized dc sputtering measured by an energy-resolved mass spectrometer”, Vacuum, Vol. 53, pp. 21-24, 1999. [059] M. Diserens, J. Patscheider, and F. Lévy, “Improving the properties of titanium nitride by incorporation of silicon”, Surface and Coatings Technology, Vol. 108-109, pp. 241-246, 1998. [060] R. Wuhrer and W. Y. Y., “Modelling of nitrogen deposition pressure effect on grainmsize development and mechanical properties of nanocrystalline ternary nitride coatings”, Materials Science Forum, Vol. 539-543, pp. 1177-1182, 2007. [061] Y.Y. Chang, D.Y. Wang, and C.Y. Hung, “Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process”, Surface and Coatings Technology, Vol. 200, pp. 1702-11708, 2005. [062] S.H. Kim, J.K. Kim, and K.H. Kim, “Influence of deposition conditions on the microstructure and mechanical properties of Ti-Si-N films by DC reactive magnetron sputtering”, Thin Solid Films, Vol. 420-421, pp. 360-365, 2002. [063] H.Watanabe, Y. Sato, C. Nie, A. Ando, S. Ohtani, and N. Iwamoto, “The mechanical properties and microstructure of Ti-Si-N nanocomposite films by ion plating”, Surface and Coatings Technology, Vol. 169-170, pp. 452-455, 2003. [064] O.N. Park, J.H. Park, S.Y. Yoon, M.H. Lee, and K.H. Kim, “Tribological behavior of Ti-Si-N coating layers prepared by a hybrid system of arc ion plating and sputtering techniques”, Surface and Coatings Technology, Vol. 179, pp. 83-88, 2004. [065] M.C. Kang, J.S. Kim, and K.H. Kim, “Cutting performance using high reliable device of Ti-Si-N-coated cutting tool for high-speed interrupted machining”, Surface and Coatings Technology, Vol. 200, pp. 1939-1944, 2005. [066] L. Hultman, J.E. Sundgren, and J. E. Greene, “Formation of polyhedral N2 bubbles during reactive sputter deposition of epitaxial TiN(100) films”, Journal of Applied Physics, Vol. 66, pp. 475-1003, 1989. [067] F. Vaz, L. Rebouta, B. Almeida, P. Goudeau, J. Pacaud, J. P. Rivière, and J. Bessa e Sousa, “Structural analysis of Ti1−xSixNy nanocomposite films prepared by reactive magnetron sputtering”, Surface and Coatings Technology, Vol. 120-121, pp. 166-172, 1999. [068] S. Vepřek, S. Reiprich, and L. Shizhi, “Superhard nanocrystalline composite materials: The TiN/Si3N4 system”, Applied Physics Letters, Vol. 66, pp. 2605-2756, 1995. [069] M. Diserens, J. Patscheider, and F. Lévy, “Mechanical properties and oxidation resistance of nanocomposite TiN-SiNx physical-vapor-deposited thin films”, Surface and Coatings Technology, Vol. 120-121, pp. 158-165, 1999. [070] L. Rebouta, C. J. Tavares, R. Aimo, Z. Wang, K. Pischow, E. Alves, T. C. Rojas, and J. A. Odriozola, “Hard nanocomposite Ti-Si-N coatings prepared by DC reactive magnetron sputtering” Surface and Coatings Technology, Vol. 133-134, pp. 234-239, 2000. [071] Y. Xu, L.e Li, X. Cai, P. K., and Chu, “Hard nanocomposite Ti-Si-N films prepared by DC reactive magnetron sputtering using Ti-Si mosaic target”, Surface and Coatings Technology, Vol. 201, pp. 6824-6827, 2007. [072] E. Varesi, G. Pavia, A. Zenkevich, Yu. Lebedinskii, P. Besana, A. Giussani, and A. Modelli, “Structural and physical analysis on MOCVD Ti-Si-N films”, Journal of Physics and Chemistry of Solids, Vol. 68, 1046-1051, 2007. [073] C.H. Zhang, Z.-J. Liu, K. Y. Li, Y. G. Shen, and J. B. Luo, “Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition”, Journal of Applied Physics, Vol. 95, pp. 1460-1467, 2004. [074] P. Zhang, Z. Cai, and W. Xiong, “Influence of Si content and growth condition on the microstructure and mechanical properties of Ti-Si-N nanocomposite films”, Surface and Coatings Technology, Vol. 201, pp. 6819-6823, 2007. [075] H.Y. Zhao, Q.L. Fan, L.Xin Song, T. Zhang, E.Wei Shi, and X.F. Hu, “Synthesis and characterization of superhard Ti-Si-N films obtained in an inductively coupled plasma enhanced chemical vapor deposition (ICP-CVD) with magnetic confinement”, Applied Surface Science, Vol. 252, pp. 3065-3072, 2006. [076] J. Perez-Mariano, K.-H. Lau, A. Sanjurjo, J. Caro, D. Casellas, and C. Colominas, “TiSiN nanocomposite coatings by chemical vapor deposition in a fluidized bed reactor at atmospheric pressure (AP/FBR-CVD)”, Surface and Coatings Technology, Vol. 201, pp. 2217-2225, 2006. [077] D. Ma, S. Ma, and K. Xu, “The tribological and structural characterization of nano-structured Ti-Si-N films coated by pulsed-d.c. plasma enhanced CVD”, Vacuum, Vol. 79, pp. 7-13, 2005. [078] D. Ma, S. Ma, and K. Xu, “Influence of Si content on Nano-structured Ti-Si-N films coated by pulsed-d.c. plasma enhanced CVD”, Surface and Coatings Technology, Vol. 184, pp. 182-187, 2004. [079] M. Nose, Y. Deguchi, T. Mae, E. Honbo, T. Nagae, and K. Nogi, “Influence of sputtering conditions on the structure and properties of Ti-Si-N thin films prepared by r.f.-reactive sputtering”, Surface and Coatings Technology, Vol. 174 -175, pp. 261-265, 2003. [080] K.H. Kim, S.R. Choi, and S.Y. Yoon. “Superhard Ti-Si-N coatings by a hybrid systemof arc ion plating and sputtering techniques”, Surface and Coatings Technology, Vol. 298, pp. 243-248, 2002. [081] Y. Miura and S. Fujieda “Structural investigation of thermally nitrided amorphous Ti silicide”, Journal of Applied Physics, Vol. 81, pp. 6476-6478, 1997. [082] N. Jiang, Y.G. Shen, H.J. Zhang, S.N. Bao, and .X.Y. Hou, “Superhard nanocomposite Ti-Al-Si-N films deposited by reactive unbalanced magnetron sputtering”, Materials Science and Engineering B, Vol. 135, pp. 1-9,2006. [083] P.J. Martin, A. Bendavid, J.M. Cairney, and M. Hoffman, “Nanocomposite Ti-Si-N, Zr-Si-N, Ti-Al-Si-N, Ti-Al-V-Si-N thin film coatings deposited by vacuum arc deposition”, Surface and Coatings Technology, Vol. 200, pp. 2225-2235, 2005. [084] I.W. Park, S.R. Choi, J.H. Suh, C.G. Park, and K.H. Kim, “Deposition and mechanical evaluation of superhard Ti-Al-Si-N nanocomposite films by a hybrid coating system”, Thin Solid Films, Vol. 447-448, pp. 443-448, 2004. [085] G.S. Kim, B.S. Kim, S.Y. Lee, and J.H. Hahn, “Effect of Si content on the properties of TiAl-Si-N films deposited by closed field unbalanced magnetron sputtering with vertical magnetron sources”, Thin Solid Films, Vol. 506-507, pp. 128-132, 2006. [086] I.W. Park, D.S. Kang, J.J. Moore, S.C. Kwon, J.J. Rha and K.H. Kim, “Microstructures, mechanical properties, and tribological behaviors of Cr-Al-N, Cr-Si-N, and Cr-Al-Si-N coatings by a hybrid coating system”, Surface and Coatings Technology, Vol. 201, pp. 5223-5227, 2007. [087] N. Wada, S.A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4”, Journal of Non-Crystalline Solids, Vol. 43, pp. 7-15, 1981. [088] R. Riedel and M. Seher, “Crystallization behaviour of amorphous silicon nitride”, Journal of the European Ceramic Society, Vol. 7, pp. 21-25, 1991. [089] F. Vaz, L. Rebouta, Ph. Goudeau, T. Girardeau, J. Pacaud, J. P. Riviére, and A. Traverse, “Structural transitions in hard Si-based TiN coatings: the effect of bias voltage and temperature”, Surface and Coatings Technology, Vol. 146-147, pp.274-279, 2001. [090] D. Wolf and J. F. Lutsko, “Structurally induced supermodulus effect in superlattices”, Physical Review Letters, Vol. 60, pp. 1170-1173, 1988. [091] S. Vepřek, M. Haussmann, and S. Reiprich, “Superhard nanocrystalline W2N/amorphous Si3N4 composite materials”, Journal of Vacuum Science and Technology A, Vol. 14, pp. 46-51, 1996. [092] L. Karlsson, L. Hultman, and J.E. Sundgren, “Influence of residual stresses on the mechanical properties of TiCxN1-x (x=0, 0.15, 0.45) thin films deposited by arc evaporation”, Thin Solid Films, Vol. 371, pp. 167-177, 2000. [093] P. H. Mayrhofer and C. Mitterer, “High-temperature properties of nanocomposite TiBxNy and TiBxCy coatings”, Surface and Coatings Technology, Vol. 133-134, pp. 131-137, 2000. [094] H. Oettel and R. Wiedemann, “Residual stresses in PVD hard coatings”, Surface and Coatings Technology, Vol. 76-77, pp. 265-273, 1999. [095] V. Valvoda, R. Kužel Jr., R. Černý, and J. Musil, “Structure of TiN coatings deposited at relatively high rates and low temperatures by magnetron sputtering”, Thin Solid Films, Vol. 53, pp. 53-64, 1988. [096] W. Herr and E. Broszeit, “The influence of a heat treatment on the microstructure and mechanical properties of sputtered coatings”, Surface and Coatings Technology, Vol. 97, pp. 335-340, 1997. [097] Y.V. Milman, B. A. Galanov, and S. I. Chugunova, “Plasticity characteristic obtained through hardness measurement”, Acta Metallurgica et Materialia, Vol. 41, pp. 2523-2532, 1993. [098] J. Desmaison, P. Lefort and M. Billy, “Oxidation mechanism of titanium nitride in oxygen” Oxidation of Metals, Vol. 13, pp. 505-517-91. 1979. [099] Y.G. Gogotsi, F. Porz, and G. Dransfield, “Oxidation behavior of monolithic TiN and TiN dispersed in ceramic matrices”, Oxidation of Metals, Vol. 39, pp. 69-91. 1993. [100] J.A. Taylor, G.M. Lancaster, and J.W. Rabalais, “Chemical reactions of N2+ ion beams with group IV elements and their oxides”, Journal of Electron Spectroscopy and Related Phenomena, Vol. 13, pp.435-444, 1978. [101] J.A. Taylor, G.M. Lancaster, A. Ignatiev, and J.W. Rabalais, “Interactions of ion beams with surfaces. Reactions of nitrogen with silicon and its oxides”, Journal of Chemical Physics, Vol. 68, pp. 1776-1784, 1978. [102] E. Paparazzo, M. Fanfoni, and E. Severini, “Studies on the structure of the SiOx/SiO2 interface”, Applied Surface Science, Vol. 56-58, pp. 866-872, 1992. [103] I. Montero, L. Galan, E. de la Cal, J.M. Albella, and J.C. Pivin, “Incorporation of _OH radicals in anodic silicon oxide films studied by secondary-ion mass spectroscopy, X-ray photoelectron spectroscopy and ir analysis”, Thin Solid Films, Vol. 193-194, pp. 325-332, 1990. [104] J. Finster, E.D. Klinkenberg, J. Heeg, and W. Braun, “ESCA and SEXAFS investigations of insulating materials for ULSI microelectronics”, Vacuum, Vol. 41, pp. 1586-1589, 1990. [105] H. Konno and M. Nagayama, “X-ray photoelectron spectra of hexavalent iron”, Journal of Electron Spectroscopy and Related Phenomena, Vol. 18, pp. 341-343, 1980. [106] S. S. Chao, Y. Takagi, G. Lucovsky, P. Pai, R. C. Custer, J. E. Tyler, and J. E. Keem, “Chemical states study of Si in SiOx films grown by PECVD”, Applied Surface Science, Vol. 26, pp. 575-583, 1986. [107] T. Kacsich, S. Gasser, Y. Tsuji, A. Dommann, and M.-A. Nicolet, “Wet oxidation of Ti34Si23N43”, Journal of Applied Physics, Vol. 85, pp. 1871-1875, 1999. [108] T. Kacsich, K. P. Lieb, A. Schaper, and O. Schulte, “Oxidation of thin chromium nitride films: kinetics and morphology”, Journal of Physics: Condensed Matter, Vol. 8, pp. 10703-10719, 1996. [109] P. Steyer, A. Mege, D. Pech, C. Mendibide, J. Fontaine, J.-F. Pierson, C. Esnouf, and P. Goudeau, “Influence of the nanostructuration of PVD hard TiN-based films on the durability of coated steel”, Surface and Coatings Technology, Vol. 202, pp. 2268-2277, 2008. [110] C.H. Zhang, X.C. Lu, H. Wang, J.B. Luo, Y.G. Shen, K.Y. Li, “Microstructure, mechanical properties, and oxidation resistance of nanocomposite Ti-Si-N coatings”, Applied Surface Science, Vol. 252, pp. 6141-6153, 2006. [111] Y. Chiba, T. Omura, and H. Ichimura, “Wear resistance of arc ion-plated chromium nitride coatings”, Journal of Materials Research, Vol. 8, pp. 1109-1115, 1993. [112] T. Bin, Z. Xiaodong, H. Naisai, and H. Jiawen, “Study on the structure and tribological properties of CrN coating by IBED”, Surface and Coatings Technology, Vol. 131, pp. 391-394, 2000. [113] J. A. Sue and T. P. Chang, “Friction and wear behavior of titanium nitride, zirconium nitride and chromium nitride coatings at elevated temperatures”, Surface and Coatings Technology, Vol. 76-77, pp. 61-69, 1995. [114] P. Yashar, S. A. Barnett, J. Rechner, and W. D. Sproul, “Structure and mechanical properties of polycrystalline CrN/TiN superlattices”, Journal of Vacuum Science and Technology A, Vol. 16. pp. 2913-2918, 1998. [115] Q. Yang, C. He, L. R. Zhao, and J.P. Immarigeon, “Preferred orientation and hardness enhancement of TiN/CrN superlattice coatings deposited by reactive magnetron sputtering”, Scripta Materialia, Vol. 46, pp. 293-297, 2002. [116] M. Nordin and M. Larsson, “Deposition and characterisation of multilayered PVD TiN/CrN coatings on cemented carbide”, Surface and Coatings Technology, Vol. 116-119, pp.108-115, 1999. [117] S.Y. Lee, G.S. Kim, and J.H. Hahn, “Effect of the Cr content on the mechanical properties of nanostructured TiN/CrN coatings”, Surface and Coatings Technology, Vol. 177-178, pp.426-433, 2004. [118] X. Z. Ding, X. T. Zeng, Y. C. Liu, Q. Yang, and L. R. Zhao, “Structure and mechanical properties of Ti-Si-N films deposited by combined DC/RF reactive unbalanced magnetron sputtering”, Journal of Vacuum Science and Technology A, Vol.22, pp. 2351-2355, 2004. [119] C. Mendibide, P. Steyer, J. Fontaine, and P. Goudeau, “Improvement of the tribological behaviour of PVD nanostratified TiN/CrN coatings — An explanation”, Surface and Coatings Technology, Vol. 201, pp. 4119-4124, 2006. [120] C. Mendibide, P. Steyer, C. Esnouf, P. Goudeau, D. Thiaudière, M. Gailhanou, and J. Fontaine, “X-ray diffraction analysis of the residual stress state in PVD TiN/CrN multilayer coatings deposited on tool steel”, Surface and Coatings Technology, Vol. 200, pp. 165-169, 2005. [121] C. Mendibide, J. Fontaine, P. Steyer and C. Esnouf, “Dry Sliding Wear Model of Nanometer Scale Multilayered TiN/CrN PVD Hard Coatings”, Tribology Letters, Vol. 17, pp. 779-789, 2004. [122] W.Y. Ho, Ch.H. Hsu, D.H.Huang, Y.P. Cheng, Y.C. Lin, and C.L. Chang, “Oxygen effect on the mechanical behaviors of Cr(N,O)/CrN double-layered coatings by cathodic arc evaporation”, Surface and Coatings Technology, Vol. 188-189, pp. 129-134, 2004. [123] W.Y. Ho, D.H. Huang, L.T. Huang, C.H. Hsu, and D.Y. Wang, “Study of characteristics of Cr2O3/CrN duplex coatings for aluminum die casting applications”, Surface and Coatings Technology, Vol. 177-178, pp. 172-177, 2004. [124] Y. M. Zhou, R. Asaki, K. Higashi, W. H. Soe, and R. Yamamoto, “Sliding wear behavior of polycrystalline TiN/CrN multilayers against an alumina ball”, Surface and Coatings Technology, Vol. 130, pp. 9-14, 2000. [125] G.M.Z Köcker, T. Gross, and E. Santner, “Influence of the testing parameters on the tribological behaviour of self-mated PVD-coatings”, Wear, Vol. 179, pp. 5-10, 1994. [126] Y. Zhou, R. Asaki, W.H. Soe, R. Yamamoto, R. Chen, and A. Iwabuchi, “Hardness anomaly, plastic deformation work and fretting wear properties of polycrystalline TiN/CrN multilayers”, Wear, Vol. 236, pp. 159-164, 1999. [127] H.D. Männling, D. S. Patil, K. Moto, M. Jilek, and S. Vepřek, “Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides”, Surface and Coatings Technology, Vol. 146-147, pp. 263-267, 2001. [128] S. Carvalho, E. Ribeiro, L. Rebouta, F. Vaz, E. Alves, D. Schneider, and A. Cavaleiro, “Effects of the morphology and structure on the elastic behavior of (Ti,Si,Al)N nanocomposites”, Surface and Coatings Technology, Vol. 174-175, pp. 984-991, 2006. [129] O. Zywitzki, H. Klostermann, F. Fietzke, and T. Modes, “Structure of superhard nanocrystalline (Ti,Al)N layers deposited by reactive pulsed magnetron sputtering”, Surface and Coatings Technology, Vol. 200, pp. 6522-6526, 2006. [130] A. Escudeiro Santana, A. Karimi, V.H. Derflinger, and A. Schütze, “The role of hcp-AlN on hardness behavior of Ti1−xAlxN nanocomposite during annealing”, Thin Solid Films, Vol. 469-470, pp. 339-344, 2004. [131] S. PalDey and S. C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review”, Materials Science and Engineering A, Vol. 342, pp. 58-79, 2003. [132] M. Zhou, Y. Makino, M. Nose, and K. Nogi, “Phase transition and properties of Ti-Al-N thin films prepared by r.f.-plasma assisted magnetron sputtering”, Thin Solid Films, Vol. 339, pp. 203-208, 1999. [133] J. S. Yoon, H. Y. Lee, J. G. Han, S. H. Yang, and J. Musil, “The effect of Al composition on the microstructure and mechanical properties of WC-TiAlN superhard composite coating” , Surface and Coatings Technology, Vol. 142-144, pp. 596-602, 2001. [134] G.M. Ingo and N. Zacchetti, High Temperature Science, Vol. 28, pp. 137, 1990. [135] F. Kauffmann, G. Dehm, V. Schier, A. Schattke, T. Beck, S. Lang, and E. Arzt, “Microstructural size effects on the hardness of nanocrystalline TiN/amorphous-SiNx coatings prepared by magnetron sputtering”, Thin Solid Films, Vol. 473, pp. 114-122, 2005. [136] H.M. Liao, R.N.S. Sodhi, and T.W. Coyle, “Surface composition of AlN powders studied by x-ray photoelectron spectroscopy and bremsstrahlung-excited Auger electron spectroscopy”, Journal of Vacuum Science and Technology A, Vol. 11, pp. 2681-2686, 1993. [137] J. Huang, L. Wang, Q. Shen, C. Lin, and M. Östling, “Preparation of AlN thin films by nitridation of Al-coated Si substrate”, Thin Solid Films, Vol. 340, pp. 137-139, 1999. [138] M. Parlinska-Wojtan, A. Karimi, T. Cselle, and M. Morstein, “Conventional and high resolution TEM investigation of the microstructure of compositionally graded TiAlSiN thin films”, Surface and Coatings Technology, Vol. 177-178, pp. 376-381, 2004. [139] M. Parlinska-Wojtan, A. Karimi, O. Coddet, T. Cselle, and M. Morstein, “Characterization of thermally treated TiAlSiN coatings by TEM and nanoindentation”, Surface and Coatings Technology, Vol. 188-189, pp. 344-350, 2004. [140] A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, “On the validity of the hall-petch relationship in nanocrystalline materials”, Scripta Metallurgica, Vol. 23, pp. 1679-1683, 1989. [141] S. L. Lehoczky, “Retardation of dislocation generation and motion in thin-layered metal laminates”, Physical Review Letters, Vol. 41, pp. 1814-1818, 1978. [142] M. S. Leu, B. F. Chen, and S. Y. Chen, “The influence of magnetic solenoid filtration on the property of (Ti-Al)N coatings deposited in a cathodic arc deposition system”, Surface and Coatings Technology, Vol. 148, pp. 25-29, 2001. [143] Da-Yung Wang, Yen-Way Li, and Wei-Yu Ho, “Deposition of high quality (Ti,Al)N hard coatings by vacuum arc evaporation process” , Surface and Coatings Technology, Vol. 114, pp. 109-113, 1999. [144] D. McIntyre, J. E. Greene, G. Håkansson, J.E. Sundgren, and W.D. Münz, “Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: Kinetics and mechanisms”, Journal of Applied Physics, Vol. 63, pp. 1542-1553, 1990. [145] Y. Matsui, M. Hiratani, Y. Nakamura, I. Asano, and F. Yano, “Formation and oxidation properties of (Ti1-xAlx)N thin films prepared by dc reactive sputtering”, Journal of Vacuum Science and Technology A, Vol. 20, pp. 605-611, 2002. [146] M. Schütze, M. Malessa, V. Rohr, and T. Weber, “Development of coatings for protection in specific high temperature environments”, Surface and Coatings Technology, Vol. 201, pp. 3872-3879, 2006. [147] A. Vennemann, H.R. Stock, J. Kohlscheen, S. Rambadt and G. Erkens, “Oxidation resistance of titanium-aluminium-silicon nitride coatings”, Surface and Coatings Technology, Vol. 174-175, pp. 408-415, 2003. [148] Y.S. Li, S. Shimada, H. Kiyono and A. Hirose, “Synthesis of Ti-Al-Si-N nanocomposite films using liquid injection PECVD from alkoxide precursors”, Acta Materialia, Vol. 54, pp. 2041-2048, 2006. [149] F. Ansart, H. Ganda, R. Saporte, and J. P. Traverse, “Study of the oxidation of aluminium nitride coatings at high temperature”, Thin Solid Films, Vol. 260, pp. 38-46, 1995. [150] Y.C. Ee, Z. Chen, S.B. Law, and S. Xu, “Formation and characterization of Ti-Si-N-O barrier films”, Thin Solid Films, Vol. 504, pp. 218-222, 2006. [151] I. Barin, Thermochemical Data of Pure Substances, New York, 1995. [152] Y. Oishi and W. D. Kingery, “Oxygen Diffusion in Periclase Crystals”, Journal of Chemical Physics, Vol. 33, pp. 905-906, 1960. [153] N. Almqvist, M. Rubel, P. Wienhold, and S. Fredriksson, “Evaluation of PVD Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion testsnitride coatings, using impact, scratch and Rockwell-C adhesion tests”, Thin Solid Films, Vol. 270. pp.431-438, 1995.
摘要: 
本實驗利用陰極電弧沉積系統製備Ti-Si-N、TiSiN/CrN多層膜與Ti-Al-Si-N薄膜。沉積Ti-Si-N薄膜所使用的靶材為Ti80Si20合金靶,並在不同氮氣壓力下進行沉積。沉積薄膜的同時,利用光譜分析設備(OES)搜集電漿光譜訊號,顯示Ti-Si-N電漿中具有原子態、離子態與電荷的轉移的現象;且Si含量隨著氮氣流量的提升,由3.3 at.%增加至6.0 at.%。當Si含量為6.0 at.%時,Ti-Si-N薄膜的硬度可達45 GPa,殘留應力為-9.5 GPa。而將此試片經過600 ~ 800°C之高温氧化處理,利用XPS進行縱深分析,結果發現Ti-Si-N薄膜於600 ~ 700°C開始急劇氧化。
為了增加Ti-Si-N薄膜與基材間之附著力,利用CrN與基材間具有良好附著性的特性,做為Ti-Si-N的介層,與Ti-Si-N交替沉積,形成TiSiN/CrN多層膜。而TiSiN/CrN多層膜的製備亦使用Ti80Si20合金靶搭配Cr靶,並控制不同靶電流比值調整多層膜之週期厚度與Si含量,靶電流比I[TiSi] / I[Cr]分別為1.8, 1及 0.55,此外,雙層TiSiN/CrN薄膜則為對照組。由TEM影像可知,TiSiN/CrN多層膜之週期厚度依不同靶電流比分別為8.3 nm、6.2 nm與4.2 nm;Si含量也由4.7 at.%降至2.4 at.%,而雙層TiSiN/CrN薄膜的Si含量為7.0 at.%。機械性質方面,雙層TiSiN/CrN薄膜硬度為36±1 GPa,殘留應力為-7.25 GPa;週期厚度為8.3 nm之TiSiN/CrN多層膜具有較高的硬度與最低的殘留應力,分別為37±1 GPa與-1.6 GPa。至於磨耗性質,磨擦係數會隨著薄膜中化學組成之Cr含量增加而降低;而磨耗率以雙層TiSiN/CrN薄膜之18 × 10-5 mm3/min為最差,TiSiN/CrN-1.8多層膜之3.7 × 10-5 mm3/min為最佳。
Ti-Al-Si-N薄膜的製備即使用Al89Si11合金靶和Ti靶並通入氮氣進行沉積,相同地控制靶電流比I[AlSi] / I[Ti]以調整Ti-Al-Si-N薄膜中(Al + Si)含量。由薄膜之化學組成可知(Al+Si)含量隨靶電流比I[AlSi]/I[Ti]的增加,由10.3 at.%提升至30.4 at.%,其中Si含量的變化量不大,僅由1.2 at.%增加至4.4 at.%。由X光繞射的結果發現,當(Al + Si)/(Ti + Al + Si) > 0.58,將會析出fcc-AlN與hcp-AlN;且Ti-Al-Si-N晶粒尺寸隨(Al + Si)含量增加,由8 nm降至2.8 nm。機械性質方面,硬度值隨著(Al + Si)含量增加而提升,可達39.3 GPa,當(Al + Si)/(Ti + Al + Si) > 0.4,AlN相的出現造成硬度的下降;殘留應力也隨之下降,(Al + Si)/(Ti + Al + Si) = 0.58時,殘留應力為最低,-3.7 GPa。進一步利用TGD進行重量與温度之量測,觀察氧化行為,結果顯示,隨著(Al + Si)含量增加,AlN相的生成可提高熱穩定性,其抗氧化温度可提升至1115.8°C。
由實驗結果比較可發現,Ti-Si-N具有較高之硬度值,並可藉由CrN介層有效改善薄膜與基材間附著力之問題,且TiSiN/CrN多層膜的設計可大幅度降低磨耗率,提升抗磨耗之能力;雖然Ti-Al-Si-N薄膜因化學組成之故,造成AlN相的析出,使得薄膜硬度下降,但在抗高温氧化方面卻因AlN相的存在而提高薄膜的氧化温度。

Ti-Si-N, multilayered TiSiN/CrN, and Ti-Al-Si-N coatings were synthesized by cathodic arc evaporation with plasma-enhancing filter duct, in this study. Ti80Si20 alloy were adopted as the cathodic material to evaporate Ti-Si-N coatings with different nitrogen pressure. Optical emission study revealed that excitation, ionization and charge transfer reactions of the Ti-Si-N plasma occurred during the Ti-Si-N deposition process. The chemical content of Si varied from 3.3 to 6.0 at% in Ti-Si-N depending on the nitrogen partial pressure of the reaction chamber. Among the studied Ti-Si-N coatings, the Ti-Si-N with 6 at.% Si possessed the highest hardness of 45 GPa and the residual stress of -9.5 GPa. After oxidation between 600 ~ 800°C for 2 hours, it found the Ti-Si-N with 6 at.% Si started to oxidize among 600 ~ 700°C, analysed with depth profile of XPS.
CrN was employed as an interlayer to form a TiSiN/CrN periodical structure due to its good adhesion strength. The Ti/Si (80/20 at.%) and chromium targets (diameter = 100 mm) were used as the cathodic materials. For the multilayered TiSiN/CrN film, CrN was deposited as an interlayer about 300 nm to enhance the adhesion strength between the substrate and TiSiN film. The dual-layered TiSiN was deposited at a N2 pressure of 4 Pa and the Ti/Si (80/20 at.%) cathode current was 90 A. For the deposition of multilayered TiSiN/CrN coatings, the different periodic thickness of multilayered TiSiN/CrN coating was decided by the alteration of Ti/Si and chromium cathode current, and the ratios of TiSi/Cr cathode current (I[TiSi]/I[Cr]) were 1.8, 1, and 0.55. The rotational speed of the substrate holder was fixed at 2 rpm for all samples. It found the multilayered TiSiN/CrN coatings deposited at different I[TiSi]/I[Cr] cathode current ratios of 1.8, 1.0, and 0.55 possessed different multilayer periods (Λ) of 8.3 nm, 6.2 nm, and 4.2 nm. From the XRD analyses, it showed that the residual stress of the dual-layered TiSiN was −7.25 GPa. The multilayered TiSiN/CrN-8.3 coating possesses the highest hardness of 37± 2 GPa and elastic modulus of 396±20 GPa, and the lowest residual stress of −1.60 GPa among the deposited coatings. The multilayered coating design of TiSiN/CrN can lower the residual stress substantially. For tribological analyses, the dual-layered TiSiN/CrN coating possessed the highest wear rate of 18 × 10-5 mm3/min, and the multilayered TiSiN/CrN-8.3 coating possessed the lowest wear rate of 3.7 × 10-5 mm3/min. In addition, the friction coefficient of dual-layered and multilayered TiSiN/CrN were decreased with the higher Cr content of coating.
Ti-Al-Si-N coatings were synthesized by cathodic arc evaporation with titanium and Al/Si (89/11 at.%), and the ratios of AlSi/Ti cathode current (I[AlSi]/I[Ti]) were 0.5, 1, 1.5, 2, and 2.5. The (Al + Si) content in coating was decided by the alteration of Al/Si and titanium cathode current. The results showed the (Al + Si) content was varied from 10.3 at.% to 30.4 at.%, with the ratios of AlSi/Ti cathode current increasing. It was found fcc-AlN and hcp-AlN were precipitated from Ti-Al-Si-N structure, while (Al + Si)/(Ti + Al + Si) > 0.58. In addition, the grain size of Ti-Al-Si-N decreased from 8 to 2.8 nm with (Al + Si) content increasing. Among Ti-Al-Si-N coatings, the highest hardness of 39.3 GPa was obtained with (Al + Si)/(Ti + Al + Si) equal of 0.4. However, the precipitation of AlN caused the hardness and residual stress decrease. Ti-Al-Si-N coating possessed the lowest residual stress of -3.7 GPa, while (Al + Si)/(Ti + Al + Si) about 0.58. Besides, TGA was adopted to investigate the oxidative behavior of Ti-Al-Si-N coatings at elevated temperature. It showed the precipitation of AlN was benefit increasing thermal stability to 1115.8°C.
Comparison with results, Ti-Si-N coating possessed higher hardness than Ti-Al-Si-N coating. It can be improved the adhesion between Ti-Si-N coating and substrate with interlay of CrN. Therefore, the design of multilayered TiSiN/CrN have the ability to improve wear performance. As to the Ti-Al-Si-N coatings, the precipitation of AlN contributed the oxidative resistance in spite of destroying of hardness decrease.
URI: http://hdl.handle.net/11455/10242
其他識別: U0005-2007200609465700
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.