Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10250
標題: Magnetic properties and microstructure of FePt-Ag2Se particulate films and exchange-coupled Fe/FePt-Ag2Se films
FePt-Ag2Se顆粒薄膜以及Fe/FePt-Ag2Se交換耦合薄膜之磁性質與微結構研究
作者: 戴學暐
Tai, Hsueh-Wei
關鍵字: FePt;鐵鉑;Ag2Se;particulate film;exchange-coupled;顆粒薄膜;交換耦合
出版社: 材料科學與工程學系所
引用: [1] R. Wood (2009) , J. Magn. Magn. Mater., vol. 321, No. 6. 555–561. [2] 許仁華、孫安正 (2008),奈米儲存發展與前景,物理雙月刊(三十卷二期) p.152-159。 [3] M. Bainich, J. Proto, A. Fert, F. Nguyen Van Dau, F. Petroff (1988) . Phys. Rev. let, 61, 2472. [4] D. Weller, A. Moser, L. Folks, Margaret E. Best, W. Lee, Mike F. Toney, M. Schwickert, JU Thiele, and Mary F. Doerner (2000) , IEEE Trans. Magn., Vol.36, 10. [5] WD Caviar Green 3TB,來源網址:http://www.wdc.com/en/products/products.aspx?id=120 [6] 引用圖片來源網址: http://apcmag.com/1tb_drives_early_2007_25tb_in_2009.htm [7] 楊志信 (2005),垂直磁記錄原理,台灣資訊儲存技術協會會刊2005邀稿 [8] Soshin Chikazumi著,張煦、李學養合譯(1964),磁性物理學 [9] Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka, H. Mutoh, and N. Yoshikawa (2009) , IEEE Trans. Magn., Vol. 45, 10. [10] Thaddeus B. Massalski (1987), “Binary Alloy Phase Diagram”, vol 2, American Society For Metals, second printing. [11] H. Okamoto(1992) , “Binary Alloy Phase Diagrams”, vol. 2, ASM International, second edition. [12] JCPDS card, Card No. 29-0718. [13] M. A. I. Nahid and T. Suzuki (2004), Appl. Phys. Lett.,85, 4100. [14] JCPDS card, Card No. 65-1051 [15] 許樹恩,吳泰伯 (1996),X光繞射原理與材料結構分析,中國材料科學學會,第十三章。 [16] Hari Singh Nalwa, Stevenson Ranch, Calif (2002) , Magnetic Nanostructure. [17] JCPDS card, Card No.03-0921 [18] Thaddeus B. Massalski (1987) , Binary Alloy Phase Diagram, vol 1, American Society For Metals, second printing. [19] S.-C. Chen , P.C. Kuo, A.C. Sun, C.T. Lie, W.C. Hsu (2002) , Materials Science and Engineering B88, 91. [20] Z. L. Zhao, J. Ding, K. Inaba, J. S. Chen, and J. P. Wang (2003), Appl. Phys. Lett., Vol.83, p.2196. [21] C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy and D. E. Laughlin, J. Appl. Phys. ,Vol. 92, 10 (2002). [22] C. Y. You, Y. K. Takahashi, and K. Hono (2006), J. Appl. Phys. ,Vol.100, 056105. [23] 引用圖片來源網址: http://en.wikipedia.org/wiki/File:Ag2Sestructure.png [24] 引用圖片來源網址: http://en.wikipedia.org/wiki/File:Copper(I)-oxide-unit-cell-A-3D-balls.png [25] JCPDS card, Card No.24-1041. [26] JCPDS card, Card No.27-0619. [27] B. C. Mohanty, S. Kasiviswanathan (2006), Thin. Solid. Film. 515, 2059. [28] 陳士堃 (2002),磁性技術手冊,中華民國磁性技術協會,p.23-24。 [29] Soshin Chikazumi著,張煦、李學養合譯(1964),磁性物理學。 [30] B. D. Chllity, Introduction to magnetic materials, (Addison-Wesley, 1972), ch.7. [31] Nicola A. Spaldin, Magnetic Materials Fundamentals and device applications. [32] Edited by D. E. Gray, McGraw-Hill American Institute of Physics Handbook., 1972. [33] Maxwell, James Clerk (1954), Atreatise on Electicity and Magnetism, Articles 437 and 438, Vol.2, 1006. [34] Stoner, Phil (1945). Mag.7, 36, 803. [35] G. C. Hadjipanayais (1976), J. Appl. Phys. , Vol. 63,965. [36] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Eest, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele and Mary F. Doerner (2000), IEEE Trans. Magn. 36, 10. [37] 莊達人編著,VLSI製程技術,高立圖書有限公司 第五章。 [38] S Tamulevicius ( 1998), Stress and Strain in the Vacuum Deposited thin Film, Vacuum, Volume 51, number 2, pp.127-139. [39] Z. L. Zhao, J. Ding, K. Inaba, J. S. Chen, J. P. Wang (2003), Appl. Phys. Lett. 83, 11. [40] Z.L. Zhao, J.S. Chen, J. Ding, K. Inaba, J.P. Wang (2004), J. Magn. Magn. Mater. 282, 105. [41] Z. L. Zhao, J. Ding, Y. Ito, J. S. Chen, J. H. Zeng, J. P. Wang (2005), J. Appl. Phys. 97, 10H502. [42] C. Y. You, Y. K. Takahashi, and K. Hono (2006), J. Appl. Phys. 100, 056105. [43] T. O. Seki, Y. K. Takahashi, K. Hono (2008), J. Appl. Phys. 103, 023910. [44] C. M. Kuo, P. C. Kuoa (2000), J. Appl. Phys. 87, 1. [45] M. Daniil and P.A. Farber, H. Okumura, G.C. Hadjipanayis, D, Weller (2002), J. Magn. Magn. Mat. 246, 297. [46] S. Okamoto, O. Kitakami, Y. Shimada (2006), Mater. Trans. ,Vol.47, 43-46. [47] J. S. Chen, B. C. Lim, J. F. Hu, Y. F. Ding, G. M. Chow, and G. Ju (2008), J. Phys. D: Appl. Phys., Vol.41,205001. [48] Y. C. Wu, L. W. Wang, C. H. Lai, C. R. Chang (2008), J. Appl. Phys. 103, 07E140. [49] Li Zhang, Y.K. Takahashi, A. Perumal, K. Hono (2010) , J. Magn. Magn. Mater. 322, 2658 [50] A. Yu. Dobin, H. J. Richter (2006), Appl. Phys. Lett. 89, 062512. [51] Tie-Jun Zhou,Boon Chow Lim, and Bo Liu (2009), Appl. Phys. Lett. , Vol.94, 152505. [52] F. Wang, X. Xu, Y. Liang, J. Zhang, H. Wu (2009), Appl. Phys. Lett. 95, 022516. [53] V. Alexandrakis, D. Niarchos, K. Mergia, Jehyun Lee, J. Fidler, and I. Panagiotopoulos (2010) , J. Appl. Phys. 107, 013903 [54] Jun Wana, Michael J. Bonder, Yunhe Huang, George C.Hadjipanayis, Chaoying Ni (2010) , J. Magn. Magn. Mater. 322, 1811. [55] Jai-Lin Tsai, Hsin-Te Tzeng and Guo-Bin Lin (2010), J. Appl. Phys. 107, 09A713. [56] Jai-Lin Tsai, Hsin-Te Tzeng, Guo-Bing Lin, Bing-Fong Liu (2010), J. Alloy. Comp. 502, 456- 460. [57] L. Tian and R. Dieckmann (2000), J. Non-Cryst. Solids, 26536-40. [58] 江政忠(2001),真空技術與應用,國家實驗研究室儀器科技研究中心,第十三章。 [59] 田民波、顏怡文(2007),薄膜技術與薄膜材料,五南圖書,第十一章。 [60] http://www.bruker-axs.com, Bruker AXS, “D8 DISCOVER - New Frontiers in the Nano-World” [61] B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, third edition. [62] 吳南均、汪建民(1998),材料分析,中國材料科學學會,p.76。 [63] http://www.lakeshore.com, Lake Shore Cryotronics, Incorporation, “Vibrating Sample Magnetometers” [64] B. D. Cullity, C. D. Graham (2009), Introduction to Magnetic Materials, second edition, p.68. [65] http://www.jeol.com ,JEOL Limited, “JEM-2100F Transmission Electron Microscope” [66] David B. Williams, C. Barry Carter, Transmission Electron Microscopy, second edition. [67] Jae-Song Kim, Yang-Mo Koo (2008), Thin Solid Films 516, 1147. [68] Hari Singh Nalwa, Magnetic Nanostructures, California, USA. [69] E. P. Wohlfarth (1958), J. Appl. Phys. 29, 595. [70] A. Y. Dobin and H. J. Richter (2006), Appl. Phys. Lett. 89, 062512.
摘要: 
本實驗利用直流磁控濺鍍系統,以交錯沉積的方式在玻璃基板上製備出膜層結構為Ag(1nm)/[FePt(1nm)/Ag2Se(t nm)]10(t = 0.1 – 0.4 nm)之多層膜,接著利用快速升溫製程(RTP)進行退火。經過熱處理後,FePt與Ag2Se間會因擴散而混和,形成FePt-Ag2Se之顆粒薄膜;在磁性質上均呈現出垂直磁化之特性。當Ag2Se添加10%時,相較於FePt-Ag雙層膜,FePt之晶粒尺寸有明顯下降,由9.8nm下降至7.7nm,且分隔較好,顆粒較為均一。

接著利用Ag2Se添加10%之FePt-Ag2Se顆粒薄膜做為硬磁底層,於室溫下沉積軟磁Fe(x nm)層,其厚度控制在1 – 5 nm,形成軟(Fe)/硬(FePt-Ag2Se)磁之交換耦合薄膜。其顯示垂直磁化之特性,且軟磁Fe層的增加,磁化量會上升但矯頑磁力會下降。當Fe添加至5nm時,水平方向之磁滯曲線會有two-step的磁翻轉現象發生,表示交換耦合之程度下降。

之後利用FePt-Ag做為硬磁底層,於室溫下沉積軟磁Fe/FePt 或是FePt/Fe 層,形成軟(Fe/FePt 或是FePt/Fe)/硬(FePt-Ag)磁之交換耦合薄膜。在(Fe/FePt)-(FePt-Ag)系統中,軟磁FePt層的添加,垂直方向之矯頑磁力有下降的趨勢,軟磁層之厚度與矯頑磁力呈反比關係;而水平方向之矯頑磁力則隨著軟磁層的增加,出現two-step的翻轉現象。在(FePt/Fe)-(FePt-Ag)的系統中,當軟磁Fe層添加1nm時,磁滯曲線表現出良好的垂直磁異向性,且在水平方向之磁滯曲線呈現線性,表示其軟硬磁界面處之交換耦合效應良好。

最後,則利用超薄之石英玻璃基板(110μm)上沉積Ag/FePt雙層膜結構,之後藉由改變不同之退火溫度(200oC-800oC)以及持溫時間(1-10 min)來探討其對薄膜之應力關係。退火溫度的提升,薄膜受到熱能以及晶粒之成長應力的影響,應力集中於晶界處並且進行累積,呈現拉伸狀態;當溫度提升至500 oC後,累積之應力開始出現消耗,有下降之趨勢,推測島狀薄膜開始形成,FePt往非最密堆積面進行排列。退火時間的增加,熱能持續累積,因此當退火時間高於5分鐘,晶粒繼續成長,由島狀薄膜形成連續薄膜,因此受到成長應力的影響,應力有上升的趨勢。

Multilayers Ag/[Ag2Se(t)/FePt(1nm)]10 (thickness t = 0.1-0.4 nm) were alternately deposited on a glass substrate and subsequently annealed by rapid thermal process (RTP). After RTP, the interface between FePt and Ag2Se was inter-mixed to form particulate films. The Ag/(Ag2Se/FePt)10 particulate film showed perpendicular magnetization. Compared to Ag/FePt bilayer, the grains size of the L10 FePt decreased from 9.8 nm to 7.7 nm and uniformly separated when the total thickness of Ag2Se intermediate layer increases to 1 nm.
Then chose multilayers Ag/[Ag2Se(0.1 nm)/FePt(1nm)]10 as hard layer, the Fe layers with thickness of 1nm, 3nm, 5nm were deposited on FePt-Ag2Se particulate films at room temperature. The Fe/(FePt-Ag2Se) particulate film shows perpendicular magnetization. The magnetization was increased and coercivity was decreased with Fe layer thickness. When the Fe layer thickness increased up to 5nm, two-steps in-plane magnetization curve was found.
A soft/hard (FePt/Fe)/(FePt-Ag) and (Fe/FePt)/(FePt-Ag) trilayer with perpendicular magnetization was prepared on a glass substrate. Inserting disordered FePt layer allowed modification of the Fe/(FePt-Ag) sharp interface to (Fe/FePt)/(FePt-Ag) graded interface. The out-of-plane coercivity field was reduced as a function of the FePt thickness because the interface coupling between Fe and FePt-Ag was weakened. The coercivity was inversely proportional to the FePt thickness and evidenced to be the pinning effect at the graded interface. When the interlayer was changed to Fe layer, the coupling between disordered FePt and ordered FePt-Ag film was tuned by the thickness of Fe layer and shown the difference in in-plane hysteresis loops. When the Fe layer is 1 nm, the FePt/Fe/FePtAg film shows perpendicular magnetization with linear in-plane magnetization. The optimal perpendicular magnetization of FePt/Fe(1nm)/FePt-Ag film was contributed mainly from ordered FePt-Ag layer and the magnetization of disordered FePt layer was mediated by thin Fe layer.
The Ag(1 nm)/FePt(10 nm) bilayer films were deposited on the ultrathin quartz substrate (110μm) and subsequently annealed by rapid thermal process (RTP).Then measured curvature and stress of the sample by PSC stress analyzer. When annealing temperature increased to 500 oC, the grains affected by grain-growth stress and thermal stress, it presented tensile stress. After 500 oC, the grains began to form island-like grain because of excessive stress would be released. When annealing time increased up to 5 minutes, the grain growth from island-like films to continues films when it affected grain-growth stress.
URI: http://hdl.handle.net/11455/10250
其他識別: U0005-2107201123041000
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.