Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10277
標題: 鋁鉻鉭鈦鋯多元高熵合金氮化物薄膜製備與擴散阻障性質之研究
Preparation and Diffusion Barrier Property of AlCrTaTiZr High-Entropy-Alloy Nitride Films
作者: Cheng, Ming-Ku
陳明谷
關鍵字: interconnect;內連線;diffusion barrier;AlCrTaTiZr;nitride;thermal stability;擴散阻障層;鋁鉻鉭鈦鋯;氮化物;熱穩定性
出版社: 材料科學與工程學系所
引用: [1] X.W. Lin and D. Pramanik, “Future interconnect technologies and copper metallization”, Solid State Technology, 41 (10) (1998) 63-69. [2] A. Cros, M.O. Aboelfotoh, and K.N. Tu, “Formation, oxidation, electronic, and electrical properties of copper silicides”, Journal of Applied Physics, 67 (7) (1990) 3328-3336. [3] K.H. Min, K.C. Chun, and K.B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization”, Journal of Vacuum Science & Technology B, 14 (5) (1996) 3263-3269. [4] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN Microstructure on Diffusion Barrier Properties in Cu Metallization”, Journal of the Electrochemical Society, 145 (6) (1998) 2164-2167. [5] P. Alén, M. Ritala, K. Arstila, J. Keinonen, and M. Leskelä, “Atomic Layer Deposition of Molybdenum Nitride Thin Films for Cu Metallizations”, Journal of the Electrochemical Society, 152 (5) (2005) G361-G366. [6] R. Hübner, M. Hecker, N. Mattern, V. Hoffmann, K. Wetzig, H. Heuer, C. Wenzel, H.J. Engelmann, D. Gehre, and E. Zschech, “Effect of nitrogen content on the degradation mechanisms of thin Ta–Si–N diffusion barriers for Cu metallization”, Thin Solid Films, 500 (2006) 259-267. [7] S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang, “Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals”, Journal of the Electrochemical Society, 153 (6) (2006) G 578-G581. [8] S.Rawal, D.P. Norton, H. Ajmera, T.J. Anderson, L. McElwee-White, “Properties of Ta–Ge–(O)N as a diffusion barrier for Cu on Si”, Applied Physics Letters, 90 (2007) 051913. [9] P. Majumder and C.G. Takoudis, “Investigation on the diffusion barrier properties of sputtered Mo/W–N thin films in Cu interconnects”, Applied Physics Letters, 91 (2007) 162108. [10] Y. Wang, F. Cao, Y.T. Liu, and M.H. Ding, “Investigation of Zr–Si–N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization”, Applied Physics Letters, 92 (2008) 032108. [11] X.P. Qu, J.J. Tan, M. Zhou, T. Chen, Q. Xie, G.P. Ru, and B.Z. Li, “Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization”, Applied Physics Letters, 88 (2006) 151912 . [12] K.T. Nam, A. Datta, S.H. Kim, and K.B. Kim, “Improved diffusion barrier by stuffing the grain boundaries of TiN with a thin Al interlayer for Cu metallization”, Applied Physics Letters, 79 (16) (2001) 2549-2551. [13] J.C. Chuang, S.L. Tu, and M.C. Chen, “Sputtered Cr and Reactively Sputtered CrN Serving as Barrier Layers Against Copper Diffusion”, Journal of the Electrochemical Society, 145 (12) (1998) 4290-4296. [14] M.T. Wang, Y.C. Lin, and M.C. Chen, “Barrier Properties of Very Thin Ta and TaN Layers Against Copper Diffusion”, Journal of the Electrochemical Society, 145 (1998) 2538-2545. [15] M.Y. Kwak, D.H. Shin, T.W. Kang, and K.N. Kim, “Characteristics of TiN barrier layer against Cu diffusion”, Thin Solid Films, 339 (1999) 290-293. [16] M.B. Takeyama, A. Noya, and K. Sakanishi, “Diffusion barrier properties of ZrN films in the Cu/Si contact systems”, Journal of Vacuum Science & Technology B, 18(3) (2000) 1333-1337. [17] R.R. Schaller, “Moore’s Law: past, present and future”, IEEE Spectrum, 34 (6) (1997) 52-59. [18] J.J. Sniegowski, “Moving the World with Surface Micromachining”, Solid State Technology, 39 (2) (1996) 83-87. [19] S.P. Murarka and S.W. Hymes, “Copper metallization for ULSL and beyond”, Critical Reviews in Solid State and Materials Sciences, 20 (2) (1995) 87-124. [20] 莊達人,“VLSI 製造技術”,高立出版社,2006 年。 [21] R.C. Weast, CRC Handbook of Chemistry and Physics, The Chemical Rubber Co., 1970. [22] R.S. Muller, T.I. Kamins, “Device Electronics for Integrated Circuits”, 2nd ed., John Wiley & Sons, New York, (1986) p. 1-56. [23] M. Karimi and T. Tomkowski, “Diffusion of Cu on Cu Surfaces”, Physical Review B, 52 (7) (1995) 5364-5374. [24] A. Noya and K. Sasaki, “Auger Electron Spectroscopy Study on the Characterization and Stability of the Cu9Al4/TiN/Si System”, Japanese Journal of Applied Physics, Part 2, 30 (10) (1991) L1760- L1763. [25] M. Stavrev, D. Fischer, A. Preub, C. Wenzel, and N. Mattern, “Study of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization”, Microelectronic Engineering, 33 (1997) 269-275. [26] T. Oku, E. Kawakami, M. Uecubo, K. Takahiro, S.Yamaguchi, and M. Murakami, “Diffusion barrier property of TaN between Si and Cu”, Applied Surface Science, 99 (1996) 265-272. [27] C.W. Chen, J.S. Chen and J.S. Jeng, “Improvement on the Diffusion Barrier Performance of Reactively Sputtered Ru–N Film by Incorporation of Ta”, Journal of the Electrochemical Society, 155 (6) (2008) H438-H442. [28] Y. Liu, S. Song, D. Mao, H. Ling and M. Li, “Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si”, Microelectronic Engineering, 75 (2004) 309-315. [29] L.C. Leu, D.P. Norton, L. McElwee-White and T.J. Anderson, “Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects”, Applied Physics Letters, 92 (2008) 111917. [30] S.T. Lin and C. Lee, “Characteristics of sputtered Ta–B–N thin films as diffusion barriers between copper and silicon”, Applied Surface Science, 253 (2006) 1215-1221. [31] Y.L. Kuo, C. Lee,T, J.C. Lin, Y.W. Yen and W.H. Lee, “Evaluation of the thermal stability of reactively sputtered (Ti, Zr)Nx nano-thin films as diffusion barriers between Cu and Silicon”, Thin Solid Films, 484 (2005) 265-271. [32] X. Sun, J.S. Reid, E. Kolawa, M.A. Nicolet and R.P. Ruiz, “Reactively sputtered Ti-Si-N films. II. Diffusion barriers for Al and Cu metallizations on Si”, Journal of Applied Physics, 81 (2) (1997) 664-671. [33] J.L. Ruan, J.L. Huang, J.S. Chen and D.F. Lii, “Effects of substrate bias on the reactive sputtered Zr–Al–N diffusion barrier films”, Surface & Coatings Technology, 200 (2005) 1652-1658. [34] J.S. Reid, R.Y. Liu, P.M. Smith, R.P. Ruiz and M-A. Nicolet, “W-B-N diffusion barriers for Si/Cu metallizations”, Thin Solid Films, 262 (1995) 218-223. [35] S. Rawal, D.P. Norton, T.J. Anderson and L.McElwee-White, “Properties of W–Ge–N as a diffusion barrier material for Cu”, Applied Physics Letters, 87 (2005) 111902. [36] S.Y. Chang and C.L. Lu, “Thermal Stability and Interface Diffusion Behaviors of Electrolessly Deposited CoWP and Cu Films”, Journal of the Electrochemical Society, 155 (3) (2008) D234-D243. [37] K.I. Yoshimoto, S. Shinkai and K. Sasaki, “Application of HfN/Hf Bilayered Film as a Diffusion Barrier for Cu Metallization System of Si Large-Scale Integration”, Japanese Journal of Applied Physics, 39 (2000) 1835-1839. [38] S. Rawal, D.P. Norton, K. Kim, T.J. Anderson and L. McElwee-White, “Ge/HfNx diffusion barrier for Cu metallization on Si”, Applied Physics Letters, 89 (2006) 231914. [39] 鄭耿豪,“利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜”,國立清華大學材料科學工程研究所碩士論文,2005 年。 [40] J.W. Yeh, S.K.Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Advanced Engineering Materials, 6 (5) (2004) 299-303. [41] 蔡銘洪,“多元高熵合金薄膜微結構及電性演變之研究”,國立清華大學材料科學工程研究所碩士論文,2005 年。 [42] L.K. Elbaum, M. Wittmer, C.Y. Ting and J.J. Cuomo, “ZrN diffusion barrier in aluminum metallization schemes”, Thin Solid Films, 104 (1983) 81-87. [43] M. Damayanti, T. Sritharan, S.G. Mhaisalkar, and Z.H. Gan, “Effects of dissolved nitrogen in improving barrier properties of ruthenium”, Applied Physics Letters, 88 (2006) 044101. [44] M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, and J.Y. Gan, “Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization”, Applied Physics Letters, 92 (2008) 052109. [45] W.R. Grove, “On Some Phenomena of the Voltaic Discharge”, The Philosophical Magazine, 16 (1840) 478-482. [46] D.S. Rickerby and A. Matthews, “Advanced Surface Coatings: a handbook of surface engineering”, Glasgow, Blackie, 1991. [47] J.A. Thornton, “High Rate Thick Film Growth”, Annual Review of Materials Science, 7 (1977) 239-260. [48] B. Chapman, “Glow Discharge Processes”, A Wiley-Interscience Publication, New York, (1980) p 142. [49] H. Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, (2000) 232-233. [50] S. Haukka, K.E. Elers and M. Tuominen, “Atomic Layer CVD for Continuously Shrinking Devices”, Materials, technology, and reliability for advanced interconnects and low-k dielectrics, Materials Research Society Symposium Proceedings, 612 (2001) D6. [51] C.T. Lynch, “Handbook of Materials Science”, Cleveland, Ohio CRC Press, (1) (1974).
摘要: 
To inhibit rapid Cu diffusion in interconnect structures, an effective diffusion barrier layer with high thermal stability, low electrical resistivity and good interface adhesion is demanded. Thus in this study, AlCrTaTiZr five-element high-entropy-alloy nitride films (HEAN) were deposited on silicon substrates by reactive radio-frequency magnetron sputtering. Thermal stability of the HEAN films and their barrier properties to Cu diffusion were investigated under thermal annealing at 700 to 900

在半導體銅內連線結構中,為了防止銅迅速地擴散進入元件內,須在介電層與銅導線間沉積一有效之擴散阻障層 (Diffusion Barrier Layer),且須具有高熱穩定性、低電阻係數、良好界面附著性等特性。因此本研究以射頻磁控濺鍍方法於矽基板上沉積 Al-Cr-Ta-Ti-Zr 五元高熵合金 (High-Entropy Alloy,簡稱 HEA) 及其氮化物 (HEA nitride,簡稱 HEAN) 薄膜,並評估其作為銅內連線擴散阻障層之可行性。在薄膜沉積時通入氮氣及氬氣,而氮氣流量與總氣體流量之比率 (RN) 分別設定為 0%、10%、30%,可分別得到高熵合金薄膜、高熵合金未飽和氮化物薄膜 (氮含量佔約 41%) 及高熵合金飽和氮化物薄膜 (氮含量佔約 50%),其五種金屬元素所佔比例約為等莫耳。擴散阻障性質上的分析結果發現,Si/HEAN (RN=0%)/Cu 疊層結構於 700℃ 退火後,開始出現 Cu3Si 結晶相且電阻率逐漸上升,顯示此 HEA 薄膜已失去擴散阻障能力。而 Si/HEAN (RN=10%)/Cu 疊層結構於 800℃ 退火後,Cu3Si 結晶相些微出現,電阻率亦逐漸上升,顯示此未飽和 HEAN 薄膜逐漸失去擴散阻障能力。而 Si/HEAN (RN=30%)/Cu 疊層結構於 900℃ 退火後,未出現任何反應析出相且電阻率維持在低值,顯示其具有相當優越之擴散阻障能力。
URI: http://hdl.handle.net/11455/10277
其他識別: U0005-2206200618112700
Appears in Collections:材料科學與工程學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.