Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10287
標題: 於絕緣層覆矽基材製備鈷矽化物奈米線及其性質研究
Fabrication of cobalt silicide nanowires on SOI substrates and its properties
作者: 李旭正
Li, Hsu-Cheng
關鍵字: cobalt silicide;鈷矽化物;nanowires;Atomic force Microscopy;奈米線;原子力顯微鏡
出版社: 材料科學與工程學系所
引用: [1] B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, D. P. Yu, “Synthesis and field emission properties of TiSi2 nanowires”, Appl. Phys. Lett. 86, 243103 (2005). [2] J. Du, Z. Ren, K. Tao, A. Hu, P. Hao, Y. Huang, G. Zhao, W. Weng, G. Han, P. Du, “Self-induced preparation of assembled shrubbery TiSi nanowires by chemical vapor deposition”, Cryst. Growth Des. 8, 3543 (2008). [3] Y. Wu, J. Xiang, C. Yang, W. Lu, C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures”, Nature 430, 61 (2004). [4] K. C. Lu, W. W. Wu, H. W. Wu, C. M. Tanner, J. P. Chang, L. J. Chen, K. N. Tu, “In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction”, Nano Lett. 7, 2389 (2007). [5] K. C. Lu, K. N. Tu, W. W. Wu, L. J. Chen, B. Y. Yoo, N. V. Myung, “Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-NiSi/Si”, Appl. Phys. Lett. 90, 253111 (2007). [6] Y. C. Chou, W. W. Wu, S. L. Cheng, B. Y. Yoo, N. Myung, L. J. Chen, K. N. Tu, “In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si”, Nano Lett. 8, 2194 (2008). [7] Seo, S. Lee, H. Yoon, J. In, K. S. K. Varadwaj, Y. Jo, M. H. Jung, J. Kim, B. Kim, “Composition-tuned ConSi nanowires: location-selective simultaneous growth along temperature gradient”, ACS Nano 3, 1145 (2009). [8] Schmitt, L. Zhu, D. Schmeißer, F. J. Himpsel, S. Jin, “Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor”, J. Phys. Chem. B 110, 18142 (2006). [9] He, D.J. Smith, P. A. Bennett, “Endotaxial silicide nanowires”, Phys. Rev. Lett. 93, 256102 (2004). [10] C. W. Lim, C.-S. Shin, D. Gall, J. M. Zuo, I. Petrov, J. E. Greene, “Growth of CoSi2 on Si(001) by reactive deposition epitaxy”, J. Appl. Phys. 97, 044909 (2005). [11] C. Detavernier, C. Lavoie, F. M. d'Heurle, H. Bender, R. L. Van Meirhaeghe, “Low-temperature formation of CoSi2 in the presence of Au”, J. Appl. Phys. 95, 5340 (2004). [12] H. S. Rhee, T. W. Jang, B. T. Ahn, “Epitaxial growth of a (100) CoSi2 layer from carbonic cobalt films deposited on (100) Si substrate using an organometallic source”, Appl. Phys. Lett. 74, 1003 (1999). [13] Y. Hayashi, T. Katoh, H. Ikeda, A. Sakai, S. Zaima and Y. Yasuda, “Application of a two-step growth to the formation of epitaxial CoSi2 films on Si(001) surfaces: comparative study using reactive deposition epitaxy”, Jpn. J. Appl. Phys. 40, 269 (2001). [14] R. García, M. Calleja, H. Rohrer, “Patterning of silicon surfaces with noncontact atomic force microscopy : Field-induced formation of nanometer-size water bridges”, J. Appl. Phys. 86, 1898 (1999). [15] J. F. Lin, P. J. Wei, C. K. Tai, J. C. Chung, “Numerical and experimental studies for the anisotropic etching of silicon with the AFM oxide lines as masks”, Microelect. Eng. 85, 143 (2008). [16] F. P. Murano, G. Abadal, N. Barniol, X. Aymerich, J. Servat, P. Gorostiza, F. Sanz, “Nanometer-scale oxidation of Si(100) surfaces by tapping mode atomic force microscopy”, J. Appl. Phys. 78, 6797 (1995). [17] M. Ringger, H. R. Hidber, R. Schlogl, P. Oelhafen, H. J. Guntherodt, “Nanometer lithography with the scanning tunneling microscope”, Appl. Phys. Lett. 46, 832 (1985). [18] J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, J. Bennett, “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air”, Appl. Phys. Lett. 56. 2001 (1990). [19] E. S. Snow, P. M. Campbell, “Fabrication of Si nanostructures with an atomic force microscope”, Appl. Phys. Lett. 64, 1932 (1994). [20] T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, L. Ley, “Nanometer-scale field-induced oxidation of Si(111):H by a conducting-probe scanning force microscope : Doping dependence and kinetics”, Appl. Phys. Lett. 67, 3144 (1995). [21] A. E. Gordon, R. T. Fayfield, D. D. Litfin, T. K. Higman, “Mechanisms of surface anodization produced by scanning probe microscopes”, J. Vac. Sci. Technol. B 13, 2805 (1995). [22] D. Stievenard, P. A. Fontaine, E. Dubois, “Nanooxidation using a scanning probe microscope: An analytical model based on field induced oxidation”, Appl. Phys. Lett. 70, 3272 (1997). [23] P. Avouris, T. Hertel, R. Martel, “Atomic force microscope tip-induced local oxidation of silicon : kinetics, mechanism, and nanofabrication”, Appl. Phys. Lett. 71, 285 (1997). [24] J. A. Dagata, T. Inoue, J. Itoh, H. Yokoyama, “Understanding scanned probe oxidation of silicon”, Appl. Phys. Lett. 73, 271 (1998). [25] J. A. Dagata, T. Inoue, J. Itoh, H. Yokoyama, “Role of space charge in scanned probe oxidation”, J. Appl. Phys. 84, 6891 (1998). [26] K. E. Bean, “Anisotropic Etching of Silicon”, IEEE Trans. Electron Devices, ED-25, 1185 (1978). [27] J. C. Greenwood, “Ethylene Diamine-CatechoI-Water Mixture Shows Preferential Etching of p-n Junction”, J. Electrochem. Soc.116, 1325 (1969). [28] H. Seide, L. Csepregi, A. Heuberge, H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions”, J. Electrochem. Soc. 137, 3612 (1990). [29] F. S.-S. Chien, C.-L. Wu, Y.-C. Chou, T. T. Chen, S. Gwo, “Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching”, Appl. Phys. Lett. 75, 2429 (1999). [30] Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching”, Nanotechnology 16, 422 (2005). [31] G. J. van Gurp, W. F. van der Weg, D. Sigurd, “Interactions in the Co/Si thin-film system. II. Diffusion-marker experiments”, J. Appl. Phys. 49, 4011 (1978). [32] C. M. Comrie, R. T. Newman, “Dominant diffusing species during cobalt silicide formation”, J. Appl. Phys. 79, 153 (1996). [33] S. P. Murarka, “Refractory silicides for integrated circuits”, J. Vac. Sci. Technol. 17, 775 (1980). [34] C. H. Yu, H. H. Lin, S. L. Cheng, L. J. Chen, ” Ultrafast directional nickel-silicide-induced crystallization of amorphous silicon under high-density current stressing”, Appl. Phys. Lett., 82, 1857 (2003). [35] C.H. Yu, P.H. Yeh, L.J. Chen, “Directional nickel silicide-induced crystallization of amorphous silicon channel under high-density current stressing”, Nucl. Instr. and Meth. in Phys. Res. B 237, 167 (2005).
摘要: 
鈷矽化物(CoSi2)奈米線具線寬獨立性、低電阻率、熱穩定性佳、與矽基板有良好的晶格匹配(1.2%),可應用於金屬接觸、閘電極或元件間連線。利用掃描探針微影術製作奈米結構,以低成本簡單的步驟可應用於奈米元件的製作。
本實驗第一部份為利用原子力顯微鏡在絕緣層上覆矽基板上進行場致氧化,探討在不同環境濕度與偏壓下對於氧化線形態的影響;第二部分以絕緣層上覆矽基板製備鈷矽化物奈米線,利用原子力顯微鏡場致氧化微影製備矽奈米線,搭配兩種不同方法生成鈷矽化物:(1) 反應式磊晶法;(2) 固相反應法。探討此兩種方法生成鈷矽化物奈米線微結構、生成相及電性的差異。
研究結果顯示,場致氧化所形成氧化物高度及寬度隨施加偏壓上升而增加,在高相對濕度環境下其增加的趨勢更為明顯;若施加的偏壓大於一臨界值,氧化物高度將不再隨偏壓大小而改變。
操控成長鈷矽化物奈米線方面:400°C 及 600°C 反應式磊晶法所生成的鈷矽化物奈米線皆為非晶結構,700°C 反應式磊晶法生成多晶結構的 CoSi 奈米線,其奈米線有向兩側不規則成長的現象;400°C 固相反應形成的鈷矽化物奈米線為非晶的結構;而 600°C 固相反應則可形成多晶結構的 CoSi 奈米線;600°C 下生成的鈷矽化物奈米線由於生成矽化物的體積較多,所以電阻率低於 400°C 所生成的,反應式磊晶法生成的鈷矽化物奈米線相較於固相反應會有較大的最大電流密度值。

Cobalt silicide (CoSi2) nanowires has been widely used as gate electrodes, contacts and interconnects in nanoelectronic devices due to its line-width independent, low resistivity, high thermal stability and small lattice constant mismatch of 1.2% with silicon. Scanning probe lithography process is a low-cost and a simple method for fabricating nanometer-scale structures which can be applied to nanoelectronic devices.
The first part of this study, the effects of relative humidity and applied bias on nanometer-scale oxidation of silicon on insulator (SOI) substrates using AFM in contact mode were studied. In the second part, silicon nanowires were fabricated by wet etching of nano-oxidized SOI samples. Then, the silicon nanowires reacted with cobalt by a reactive deposition epitaxy or by a solid phase reaction to form cobalt silicide nanowires. The effects of reaction method and annealing temperature on the microstructures, phases and electrical properties of cobalt silicide nanowires were studied.
The results show as follows. The height and width of oxide nanowires formed by AFM nano-oxidation were increasing with the increase of the applied voltage. The oxidation rate was more sensitive to field strength at high relative humidity than that at low relative humidity. For high voltage, oxide height reached a saturation point, from where oxide height keeps a same value as the sample voltage increase.
For deposition reactive epitaxy, the cobalt silicide nanowires with amorphous structure were formed at 400°C and 600°C. A polycrystalline CoSi nanowire with lateral irregular growth formed at 700°C. For solid phase reaction, the cobalt silicide nanowires with amorphous structure were formed at 400°C. A polycrystalline CoSi nanowire formed at 600°C.
The resistivity of cobalt silicide nanowires formed at 600°C was lower than that formed at 400°C because the ratio of the volume of cobalt silicide to unreacted silicon was high for the nanowire formed at 600°C. The maximum current densities of cobalt silicide nanowires formed by a reactive deposition epitaxy were higher than that formed by a solid phase reaction.
URI: http://hdl.handle.net/11455/10287
其他識別: U0005-2408201120083600
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.