Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10300
DC FieldValueLanguage
dc.contributor鄭紹良zh_TW
dc.contributor李勝偉zh_TW
dc.contributor.advisor許薰丰zh_TW
dc.contributor.authorChen, Kuan-Hsunen_US
dc.contributor.author陳冠勳zh_TW
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:44:44Z-
dc.date.available2014-06-06T06:44:44Z-
dc.identifierU0005-2508201109361700zh_TW
dc.identifier.citation[1-1]H.W.Deckman, J. H. Dunsmuir,“Natural lithography”, Appl.Phys. Lett. 41 (1982) 377. [1-2] J. C. Hulteen, R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces ”, J.Vac. Sci. Technol. A 13 (1995) 1553. [1-3]Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors”, Nano Lett. 3 (2003) 149. [1-4]T. Stelzner, M. Pietsch, G. Andr, F. Falk, E. Ose S. Christiansen,“Silicon nanowire-based solar cells”, Nanotechnology 19 (2008) 295203. [1-5] J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, J. Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Appl. Phys. Lett. 88 (2006) 013112. [1-6]N. Wang, Y. Cai, R.Q. Zhang, “Growth of nanowires”, Mat. Sci.and Eng. R 60 (2008) 1. [1-7]A. M. Morales, C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science 279 (1998) 208. [1-8]Z. Zhang, X. H. Fan, L.Xu, C. X. Lee, S. T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chem. Phys. Lett. 337 (2001)18. [1-9]X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/ H2O2 produces porous silicon”, Appl. Phys. Lett. 77 (2000) 2572. [1-10]G. D. J. Smit, S. Rogge, T. M. Klapwijk, “Enhanced tunneling across nanometer-scale metal-semiconductor interfaces”, Appl. Phys. Lett. 80 (2002) 2568. [1-11]J. L. Tedesco, J. E. Rowe, R. J. Nemanich, “Conducting atomic force microscopy studies of nanoscale cobalt silicide Schottky barriers on Si (111) and Si (100)”, J. Appl. Phys. 105 (2009) 083721. [1-12]H. K. Lin, Y. F. Tzeng, C. H. Wang, N. H. Tai, I. N. Lin, C. Y. Lee, H. T. Chiu “Ti5Si3 nanowire and its field emission property”,Chem. Mater. 20 (2008) 2429. [1-13]C. M. Chang, Y. C. Chang, C. Y. Lee, P. H. Yeh, W. F. Lee, L. J. Chen, “Ti5Si4 nanobats with excellent field emission properties”, J. Phys. Chem. C 113 (2009) 9153. [1-14]C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, L. J. Chen, “Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties”, J. Phys. Chem. C113 (2009) 2286. [1-15]C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, L. J. Chen,“An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters”, Nanotechnology 22 (2011) 055603. [2-1]M. J. Huang, C. R. Yang, Y. C. Chiou, R. T. Lee, “Fabrication of nanoporous antireflection surfaces on silicon”, Solar Energy Mat. & Solar Cells 92 (2008) 1352. [2-2]C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, L. J. Chen,“An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters”, Nanotechnology 22 (2011) 055603. [2-3]A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, “Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks”, Small 4 (2005) 439. [2-4] D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers”, Nano lett. 6 (2006) 2375. [2-5]K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, S. T. Lee,“Ordered silicon nanowire arrays via nanosphere lithography and Metal-induced etching”, Appl. Phys. Lett. 90 (2007) 163123. [2-6]N. D. Denkov, D. Velev, P. A. Kralchevsky, I. B. Ivanov, J. H. Yoshimura, K. Nagayamat, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates”, Langmuir 8 (1992) 3183. [2-7]R. Micheletto, H. Fukuda, M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional,Ordered Array of Small Latex Particles”, Langmuir 11 (1995) 3333. [2-8]J. Rybczynski, U. Ebels, M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles”, Colloids and Surfaces A: Physicochem. Eng. Aspects 219 (2003) 1. [2-9]P. I. Stavroulakis, N. Christou, D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Mat. Sci. and Eng. B 165 (2009) 186. [2-10]A.S.Dimitrov, K. Nagayama,“Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces”, Langmuir 12 (1996) 1303. [2-11]H. W. Deckman, J. H. Dunsmuir, “Natural lithography”, Appl.Phys. Lett. 41 (1982) 377. [2-12]M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, Q. Li, “Fabrication of Large-Area, Transferable Colloidal Monolayers Utilizing Self-Assembly at the Air/Water Interface”, Macromol. Chem. Phys. 210 (2009) 230. [2-13]A.Plettl, F. Enderle, M.Saitner, A. Manzke, C. Pfahler, S. Wiedemann, P. Ziemann, “Non-Close-Packed Crystals from Self-Assembled Polystyrene Spheres by Isotropic Plasma Etching: Adding Flexibility to Colloid Lithography”, Adv. Funct. Mater. 19 (2009) 3279. [2-14]W. Li, W. Zhao, P. Sun, “Fabrication of highly ordered metallic arrays and silicon pillars with controllable size using nanosphere lithography”, Physica E 41 (2009) 1600. [2-15]C. Cong, W. C. Junus, Z. Shen, T. Yu, “New Colloidal Lithographic Nanopatterns Fabricated by Combining Pre-Heating and Reactive Ion Etching”, Nanoscale Res. Lett. 10 (2009) 11671. [2-16]Y. Cui, Z. Zhong, D.Wang, W. U. Wang, C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors”, Nano Lett. 3 (2003) 149. [2-17]T. Stelzner, M. Pietsch, G. Andr, F. Falk, E. Ose, S. Christiansen,“Silicon nanowire-based solar cells”, Nanotechnology 19 (2008) 295203. [2-18]J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, J. Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Appl. Phys. Lett. 88 (2006) 013112. [2-19]R. S. Wagner, W. C. Ellis, “Vapor-Liquid-Solid Mechansim Of Single Crystal Growth”, Appl. Phys. Lett. 4 (1964) 89. [2-20]N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, S. T. Lee,“Nucleation and Growth of Si Nanowires from Silicon Oxide”, Phys. Rev. B 58 (1998) R16024. [2-21]H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z.H. Xi, S. W. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism”, Chem. Phys. Lett. 323 (2000) 224. [2-22]N. Wang, Y. Cai, R.Q. Zhang, “Growth of nanowires”, Mat. Sci.and Eng. R 60 (2008) 1. [2-23]A. M. Morales, C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science 279 (1998) 208. [2-24]Z. Zhang, X. H. Fan, L.Xu, C. X. Lee, S. T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chem. Phys. Lett. 337 (2001)18. [2-25]X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/ H2O2 produces porous silicon”, Appl. Phys. Lett. 77 (2000) 2572. [2-26]K. Peng, Y. J. Yan, S. P. Gao, J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition”, Adv. Funct. Mater. 13 (2003) 127. [2-27]K.Peng, A. Lu, R. Zhang, S.T. Lee,“Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching”, Adv. Funct. Mater. 18 (2008) 3026. [2-28]O. Fellahi, T. Hadjersia, M. Maamache, S. Bouanika, A. Manseri,“Effect of temperature and silicon resistivity on the elaboration of Silicon nanowires by electroless etching”, Appl. Sur. Sci. 257 (2010) 591. [2-29] A. Lauwers , P. Besser, T. Gutt, A. Satta, M. d. Potter, R. Lindsay, N. Roelandts, F. Loosen , S. Jin , H. Bender , M. Stucchi , C. Vrancken , B. Deweerdt , K. Maex, “Comparative study of Ni-silicide and Co-silicide for sub 0.25-mm technologies”, Microelectronic Eng. 50 (2000) 103. [2-30]S. P. Maruarka,“Silicide for VLSI Applications”, 1983, Academic ress, New York. [2-31]C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, K. Maex,“CoSi2 Formation through SiO2”, Thin Solid Films 386 (2001) 19. [2-32]G. D. J. Smit, S. Rogge, T. M. Klapwijk, “Enhanced tunneling across nanometer-scale metal-semiconductor interfaces”, Appl. Phys. Lett. 80 (2002) 2568. [2-33]J. L. Tedesco, J. E. Rowe, R. J. Nemanich, “Conducting atomic force microscopy studies of nanoscale cobalt silicide Schottky barriers on Si (111) and Si (100)”, J. Appl. Phys. 105 (2009) 083721. [4-1]J. Rybczynski, U. Ebels, M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles”, Colloids and Surfaces A: Physicochem. Eng. Aspects 219 (2003) 1. [4-2] P. I. Stavroulakis, N. Christou, D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Mat. Sci. and Eng. B 165 (2009) 186. [4-3]J. Yu, Q. Yan, D. Shen, “Co-self-assembly of binary colloidal crystals at the air-water Interface”, Appl. Mater. Interfaces 2 (2010) 1922. [4-4]Y. Xia, B. Gates, Y. Yin, Y. Lu, “Monodispersed colloidal spheres :old materials with new applications”, Adv. Mater. 12 (2000) 693. [4-5]N. D. Denkov, D. Velev, P. A. Kralchevsky, I. B. Ivanov, J.H. Yoshimura, K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir 8 (1992) 3183. [4-6]P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, K. Nagayamat,“Capillary meniscus interaction between colloidal particles attached to a liquid-fluid interface”, J. Colloid Interface Sci. 151 (1992) 79. [4-7]A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching-adding flexibility to colloid lithography”, Adv. Funct. Mater. 19 (2009) 3279. [4-8] H. Fang, Y. Wu, J. Zhao, J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays”, Nanotechnology 17 (2006) 3768. [4-9] S. L. Cheng, C. H. Chung, H. C. Lee, “A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrayson (001)Si substrates”, J. Electrochem. Soc. 155 (2008) D711. [4-10]C. M. Comrie, R. T. Newman, “Dominant diffusing species during cobalt silicide formation”, J. Appl. Phys. 79 (1996) 153. [4-11]R. H. Fowler, L. Nordheim,“Electron emission in intense electric fields”, Proc. R. Soc. London Ser. A 119 (1928) 173. [4-12]C. M. Chang, Y. C. Chang, C. Y. Lee, P. H. Yeh, W. F. Lee, L. J. Chen, “Ti5Si4 nanobats with excellent field emission properties”, J. Phys. Chem. C 113 (2009) 9153. [4-13]H. B. Michaelson, “The work function of the elements and its periodicity”, J. Appl. Phys. 105 (1977) 4729. [4-14]W. Zheng, Y. Wu, H. Shiraiwa, M. T. Ramsbey, T. Kamal, “Memory device having high work function gate and method of erasing same”, US Patent 6912163 B2 (2005). [4-15]H. K. Lin, Y. F. Tzeng, C. H. Wang, N. H. Tai, I. N. Lin, C. Y. Lee, H. T. Chiu “Ti5Si3 nanowire and its field emission property”, Chem. Mater. 20 (2008) 2429. [4-16]C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, L. J. Chen, “Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties”, J. Phys. Chem. C113 (2009) 2286. [4-17]C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, L. J. Chen,“An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters”, Nanotechnology 22 (2011) 055603.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10300-
dc.description.abstractRecently, one-dimensional metal silicide nanostructures have been extensively studied, because it can be applied to electronic and optoelectronic devices, such as schottky-barrier field effect transistors and field emission devices. In this study, free-standing SiNW arrays were fabricated by the combining nanosphere lithography with metal-assisted catalytic etching. Then, cobllt silicide/Si heterostructure NW arrays were formed by a glancing angle deposition technique and a solid-phase reaction. The effects of annealing temperature of SiNWs on the formation of cobalt silicide/Si heterostructure NWs were investigated. In addition, the emission and electrical properties of the heterostructure NWs were examined. The results show that the widths of the SiNWs were in the range of 170–190 nm. The activation energy for the formation of SiNWs, was 0.26 eV. After annealing at 500℃, the Co2Si phase with small grain size were formed in the front-end of SiNWs. After annealing at 600 and 700℃, polycrystalline Co2Si and CoSi phases coexisted in the front-end of SiNWs. The reaction rate for cobalt silicide formation increased with increasing temperature. On the other hand, the porous structure was formed in the front-end of SiNW because Si atoms is a dominant diffusing species during cobalt silicide formation. The cobalt silicide/Si heterostructure NWs formed by annealing at 500℃ has the lowest turn-on field, was 0.53 V/μm.en_US
dc.description.tableofcontents摘要...I Abstract...II 表目錄...VII 圖目錄...VIII 第一章 前言...1 第二章 文獻回顧...3 2-1 奈米球微影術...3 2-1-1 奈米球微影術...3 2-1-2 奈米球自組裝機制...3 2-2 奈米球自組裝技術...4 2-2-1 自然滴製法...4 2-2-2 LB-like 自組裝技術...5 2-2-3 旋轉塗佈法...5 2-3 反應式離子蝕刻技術...6 2-4 矽奈米線...6 2-4-1 從下而上(Bottom-up)方式成長矽奈米線的機制...7 2-4-1-1 氣-液-固成長機制(Vapor-Liquid-Solid Mechanism, VLS)...7 2-4-1-2 氧化物輔助成長機制(Oxide-Assisted Growth Mechanism, OAG)...7 2-4-1-3 固-液-固成長機制(Solid-Liquid-Solid Mechanism, SLS)...7 2-4-2 矽奈米線成長方法...8 2-4-2-1 化學氣相沈積法(Chemical Vapor Deposition, CVD) ...8 2-4-2-2 雷射消融法(Laser Ablation)...8 2-4-2-3 熱蒸鍍法(Thermal Evaporation)...8 2-4-2-4 金屬輔助催化蝕刻法(Metal-Assisted Chemical Etching)...8 2-4-2-5 無電鍍化學蝕刻法...9 2-5 金屬矽化物...10 2-6 研究動機與目的...11 第三章 實驗步驟...12 3-1 製備聚苯乙烯球陣列與矽奈米線陣列...12 3-1-1 基材前處理...12 3-1-2 自組裝聚苯乙烯球陣列...13 3-1-3 縮減聚苯乙烯球作為微影之遮罩...13 3-1-4 鍍銀金屬作為催化劑...13 3-1-5 製備矽奈米線陣列...13 3-1-6 製備鈷矽化物/矽異質結構奈米線...14 3-2 鈷矽化物/矽異質結構奈米線陣列之場發性質量測...14 3-3 鈷矽化物/矽異質結構奈米線陣列之接面電性量測...14 3-4 實驗與分析儀器...15 3-4-1 感應耦合式電漿蝕刻系統...15 3-4-2 精密離子蝕刻鍍膜系統(Precision Etching Coating System)...15 3-4-3 場發射掃瞄式電子顯微鏡(Field Emission-SEM)...15 3-4-4 穿透式電子顯微鏡(TEM)...15 3-4-5 高解析穿透式電子顯微鏡(HRTEM)...15 3-4-6 原子力顯微鏡(AFM)...16 第四章 結果與討論...17 4-1 利用奈米球陣列作為微影之遮罩...17 4-1-1 影響奈米球排列之因素...17 4-1-2 反應式離子蝕刻聚苯乙烯球...18 4-1-3 金屬輔助催化蝕刻法製備矽奈米線陣列...19 4-2 鈷矽化物/矽異質結構奈米線之製備及結構分析...21 4-2-1 鈷矽化物/矽異質結構奈米線結構分析...21 4-2-2 退火溫度對於鈷矽化物/矽異質結構奈米線表面性質影響 ...23 4-2-3 場發特性...23 4-2-4 鈷矽化物/矽異質結構奈米線之接面電性...25 第五章 結論...26 參考文獻...68zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508201109361700en_US
dc.subjectsilicon nanowire arraysen_US
dc.subject矽奈米線陣列zh_TW
dc.subjectcobalt silicideen_US
dc.subjectfield emissionen_US
dc.subject鈷矽化物zh_TW
dc.subject場發射zh_TW
dc.title鈷矽化物/矽異質結構奈米線陣列製備及性質之研究zh_TW
dc.titleFabrication of Co-silicide / Si heterostructure nanowire arrays and its propertiesen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextno fulltext-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.