Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/10310
標題: | 電紡絲法製備聚三己烷基噻吩導電纖維及其特性研究 Preparation and Characterization of Electrospun Conductive Poly(3-hexyl-thiophene) Fibers |
作者: | 曾文聰 Tseng, Wen-Tsung |
關鍵字: | conductive fiber;電紡絲;electrospinning;Poly(3-hexyl-thiophene);聚三己烷基噻吩 | 出版社: | 材料科學與工程學系所 | 引用: | [1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc. Chem. Comm., (1977) 579. [2] Cao, P. Smith, A. J. Heeger, Synth. Met., 48 (1992) 91. [3] B. Wessling, Synth. Met., 1 (1991) 119. [4] J. Stejskal, P. Kratochvil, Polymer, 37 (1996) 367. [5] E. C. Venancio, C. A. R. Costa, S. A. S. Machado, A. J. Motheo, Electrochem. commun., 3 (2001) 229. [6] S. Uemura, K. Teshima, Synth. Met., 101 (1999) 701. [7] T. Yamamoto, K. Sanechika, A. Yamamoto, J. Polym. Sci., Polym. Lett. Ed, 18 (1980) 9 [8] J. W. P. Lin, L. P. Dudek, J. Polym. Sci., Polym. Chem. Ed., 18 (1980) 2869 [9] M. Kobayashi, J. Chen, T. C. Chung, F. Moraes, A. J. Heeger, F. Wudl, Synth. Met., 9 (1984) 77. [10] T. Yamamoto, A. Morita, Y. Miyazaki, T. Maruyama, H. Wakayama, Z. H. Zhou, Y. Nakamura, T. Kanbara, S. Sasaki, K. Kubota, Macromolecules, 25 (1992) 1214. [11] K. Yoshino, S. Hayashi, R. Sugimoto, Jpn. J. Appl. Phys., 23 (1984) L899. [12] J. Roncali, J. Chem. Rev., 92 (1992) 711. [13] S. Hotta, M. Soga, N. Sonoda, Synth. Met., 24 (1988) 233. [14] F. Garnier, G. Tourillon, M. Gazard, J. C. Dubois, J. Electroanal.Chem., 148 (1983) 299. [15] K. Y. Jen, R. Oboodi, R. L. Elsenbaumer, Polym. Mater. Sci. Eng., 53 (1985) 79. [16] R. L. Elsenbaumer, K. -Y. Jen, R. Oboodi, Synth. Met., 15 (1986) 169. [17] G. G. Miller, R. L. Elsenbaumer, J. Chem. Soc., Chem. Commun., (1986) 1346. [18] L. Rayleigh, Philos. Mag., 14 (1882) 184. [19] J. Zeleny, Phys. Rev., 3 (1914) 69. [20] J. Zeleny, Phys. Rev., 10 (1917) 1. [21] A. Formhals, US Patent No. 1975504, (1934). [22] G. I. Taylor, Proc. R. Soc. London, Ser., A 280 (1964) 383. [23] G. I. Taylor, J. Fluid Mech., 22 (1965) 1. [24] G. I. Taylor, Proc. R. Soc. London, Ser., A 291 (1966) 145. [25] G. I. Taylor, Proc. R. Soc. London, Ser., A 313(1969) 453. [26] L. Larrondo, R. S. J. Manley., J. Polym. Sci., PartB, Polym. Phys. Ed., 19 (1981) 909. [27] D. H. Reneker, I. Chun, Nanotechnology, 7 (1996) 216. [28] Y. M. Shin, M. M. HOhman, M. P. Brenner, Rutledge, G. C., Polymer, 42 (2001). [29] J. Doshi, D. H. Reneker, J. Electrostatics, 35 (1995) 151. [30] H. Xu, D. Galehouse, D. H. Reneker, Polym. Mater. Sci. Eng., 88 (2003) 37. [31] P. K. Baumgarten, J. Colloid Interface Sci., 36 1 (1971) 71. [32] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, J. Appl. Phys., 87 (2000) 4531. [33] L. Yarin, S. Koombhongse, D. H. Reneker, J. Appl. Phys., 89 (2001) 3018. [34] L. Yarin, S. Koombhongse, D. H. Reneker, J. Appl. Phys., 90 (2001) 4836. [35] S. Koombhongse, W. Liu, D. H. Reneker, J. Polym. Sci., PartB, Polym. Phys. Ed., 39 (2001) 2598. [36] http://www.che.vt.edu/Wilkes/electrospinning/electrspinning.html [37] D. H. Reneker, I. Chun, Nanotechnology, 7 (1996) 216. [38] S. H. Tan, R. Inai, M. Kotaki, S. Ramakrishna, Polymer, 46 (2005) 6128. [39] H. Fong, I. Chun, D. H. Reneker, Polymer, 40 (1999) 4585. [40] H. Liu, Y. L. Hsieh, J. Polym. Sci., PartB, Polym. Phys. Ed., 40 (2002) 2119. [41] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, Polymer, 43 (2002) 4403. [42] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, Polymer, 44 (2003) 4029. [43] K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, S. W. Choi, J. Polym. Sci., PartB, Polym. Phys. Ed., 41 (11) (2003) 1256. [44] D. Li, Y. Xia, Nano Letters, 3 (2003) 555. [45] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, J. Appl. Phys., 87 (2000) 4531. [46] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, Polymer, 43 (2002) 4403. [47] T. Lin, H. Wang, H. Wang, X. Wang, Nanotechnology, 15 (2004) 1375. [48] A. Koski, K. Yim, S. Shivkumar, Materials Letters., 58 (2004) 493. [49] C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt, Macromolecules, 37 (2004) 573. [50] P. K. Baumgartyen, J. Colloid Interface Sci., 36 (1971) 71. [51] S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, Macromolecules, 35 (2002) 8456. [52] X. Yuan, Y. Zhang, C. Dong, J. Sheng, Polym. Int., 53 (2004) 1704. [53] L. Wannatong, A. Sirivat, P. Supaphol, Polym. Int., 53 (2004) 1851. [54] C. J. Buchko, L. C. Chen, Y. Shen, D. C. Martin, Polymer, 40 (1999) 7397. [55] K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, N. H. Sung, J. Polym. Sci., PartB, Polym. Phys. Ed., 40 (2002) 2259. [56] Demir, M. M., I. Yilgor, E. Yilgor, B. Erman, Polymer, 43 (2002) 3303. [57] Mit-uppatham, C., M. Nithitanakul, P. Supaphol, Macromol. Chem. Physic., 205 (2004) 2327. [58] S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, Macromolecules, 35 (2002) 8456. [59] Y. Y. Fan, H. M. Cheng, Y. L.Wei, G. Su, Z. H. Shen, Carbon, 38 (2000) 789. [60] S. Megelski, J.S. Stephens, D. B. Chase, J. F. Rabolt, Macromolecules, 35 (2002) 8456. [61] Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol., 63 (2003) 2223. [62] D. Li, Y. Xia, Adv. Mater., 16 (2004) 1151. [63] Y. Zhu, J. C. Zhang, Y. M. Zheng, J. Zhai, L. Jiang, Chem. J. Chin. Univ.- Chin., 27 (2006) 196. [64] K. H. Hong, K. W. Oh, T. J. Kang, J. Appl. Polym. Sci., 96 (2005) 983. [65] A. G. MacDiarmid, W. E. Jones, I. D. Norris, J. Gao, A. T. Johnson, N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki, M. Llaguno, Synth. Met., 119 (2001) 27. [66] P. K. Kahol, N. J. Pinto, Synth. Met., 140 (2004) 269. [67] I. D. Norris, M. M. Shaker, F. K. Ko, A. G. MacDiarmid, Synth. Met., 114 (2000) 109. [68] M. Wei, J. Lee, B. W. Kang, J. Mead, Macromol. Rapid Commun., 26 (2005) 1127. [69] I. S. Chronakis, S. Grapenson, A. Jakob, Polymer, 47 (2006) 1597. [70] D. Li, A. Babel, S. A. Jenekhe, Y. N. Xia, Adv. Mater., 16 (2004) 2062. [71] Z. C. Sun, E. Zussman, A. L. Yarin, J. H.Wendorff, A. Greiner, Adv. Mater., 15 (2003) 1929. [72] K. Jayaraman, M. Kotaki, Y. Z. Zhang, X. M. Mo, S. Ramakrishna, J. Nanosci. Nanotechnol., 4 (2004) 52. [73] S. H. Lee, J. W. Yoon, M. H. Suh, Macromol. Res., 10 (2002) 282. [74] J. M. Deitzel, W. Kosik, S. H. McKnight, N. C. B. Tan, J. M. DeSimone, S. Crette, Polymer, 43 (2002) 1025. [75] Y. M. Shin, M. M. Hohman, M. P. Brenner, Rutledge, G. C., Polymer, 42 (2001) 9955. [76] I. D. Norris, M. M. Shaker, F. K. Ko, A. G. MacDiarmid, Synth. Met., 114 (2000) 109. [77] D. Aussawasathien, J. H. Dong, L. Dai, Synth. Met., 154 (2005) 37. [78] S. H. Lee, J. W. Yoon, M. H. Suh, Macromol. Res., 10 (2002) 282. [79] Y. Zhu, J. Zhang, Y. Zheng, Z. Huang, L. Feng, L. Jiang, Adv. Funct. Mater., 16 (2006) 568. [80] T. S. Kang, S. W. Lee, J. Joo, J. Y. Lee, Synth. Met., 153 (2005) 61. [81] S. Nair, S. Natarajan, S. H. Kim, Macromol. Rapid Commun., 26 (2005) 1599. [82] I. S. Chronakis, S. Grapenson, A. Jakob, Polymer, 47 (2006) 1597. [83] H. Okuzaki, T. Takahashi, N. Miyajima, Y. Suzuki, T. Kuwabara, Macromolecules, 39 (2006) 4276. [84] C. Wang, W. Zhang, Z. H. Huang, E. Y. Yan, Y. H. Su, Pigment Resin Technol., 35 (2006) 278. [85] Y. Xin, Z.H. Huang, E. Y. Yan, W. Zhang, Q. Zhao, Appl. Phys. Lett., 89 (2006) 053101. [86] W. Zhang, Z. Huang, E. Yan, C. Wang, Y. Xin, Q. Zhao, Y. Tong, Mater. Sci. Eng. A, 443 (2007) 292. [87] W. Zhang, E. Yan, Z. Huang, C. Wang, Y. Xin, Q. Zhao, Y. Tong, Eur. Polym. J., 43 (2007) 802. [88] S. Chuangchote, T. Srikhirin, P. Supaphol, Macromol. Rapid Commun., 28 (2007) 651. [89] C. Wang, E. Yan, Z. Huang, Q. Zhao, Y. Xin, Macromol. Rapid Commun., 28 (2007) 205. [90] R. Gonzalez, N. J. Pinto, Synth. Met., 151 (2005) 275. [91] H. Liu, C. H. Reccius, H. G. Craighead, Appl. Phys. Lett., 87 (2005) 1. [92] A. K. El-Aufy, B. Naber, F. K. Ko, Polym. Prepr., 44 (2003) 134. [93] D. Li, A. Babel, S. A. Jenekhe, Y. Xia, Adv. Mater., 16 (2004) 2062. [94] A. Bianco, C. Bertarelli, S. Frisk, J. F. Rabolt, M. C. Gallazzi, G. Zerbi, Synth. Met., 157 (2007) 276. [95] Z. Sun, E. Zissman, A. L. Yarin, J. H. Wendorff, A. Greiner, Adv. Mater., 15 (2003) 1929. [96] I. S. Chronakis, S. Grapenson, A. Jakob, Polymer, 47 (2006) 1597. [97] Y. Zhou, M. Freitag, J. Hone, C. Staii, A. T. Johnson, Jr, Appl. Phys. Lett., 83 (2003) 3800. [98] H. Mao, B. Xu, S. Holdcroft, Macromolecules, 26 (1993) 1163. [99] T. A. Chen, X. Wu, R. D. Rieke, J. Am. Chem. Soc., 117 (1995) 233. [100] B. K. Kuila, S. Malik, S. K. Batabyal, A. K. Nandi, Macromolecules, 40 (2007) 278. [101] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Science, 246 (1989) 64. [102] I. G. Loscertales, A. Barrero, I. Gierrero, R. Cortijo, M. Marquez, A. M. Gaoan- Calvo, Science, 295 (2002) 1695. [103] G. Larsen, R. Spretz, R. V. Ortiz, Adv. Mat., 16 (2004) 166. [104] E. J. Meijer, A. V. G. Mangnus, C. M. Hart, D. M. de Leeuw, T. M. Klapwijk, Appli. Phys. Lett., 78 (2001) 3902. [105] http://www.adsdyes.com/polythiophene-s.html | 摘要: | 本研究利用電紡絲法製備聚(3-己烷基噻吩)(P3HT)/聚乙烯氧化物(PEO)導電纖維,並探討高分子溶液性質及電紡絲參數對纖維形態的影響,最後再進行導電度的量測,探討聚(3-己烷基噻吩)/聚乙烯氧化物比例及纖維直徑對導電度的影響。 純的聚(3-己烷基噻吩)高分子溶液及添加低分子量聚乙烯氧化物的高分子混合溶液,不管是單針或同軸針系統下,因為溶液黏度太小(<31.79 cp),並無法觀察到成絲的行為,隨著添加高分子量聚乙烯氧化物,溶液黏度達到分子鏈糾纏所需臨界值(31.79 cp),單針系統開始產生整束糾纏的結構,而同軸針系統開始產生串珠狀纖維結構;在單針系統,黏度必須達到103.89 cp才能產生網狀結構,而在同軸針系統,當黏度高於68.18 cp,即開始生成平滑的網狀纖維,且纖維平均直徑在黏度為75.56 cp時達最小值為1521 nm。 在單針系統,觀察到纖維平均直徑隨著工作電壓升高,直徑由734下降至646 nm,隨著工作距離拉長,直徑由605減小至530 nm,也隨著溶液流量增加,直徑由734減小至605 nm,並發現噴嘴針頭有阻塞的情形,使得製程呈現十分不穩定的狀況;而同軸針系統並無觀察到噴嘴阻塞的情形,製程呈現穩定且連續的狀況,且觀察到纖維平均直徑隨著工作電壓升高,直徑由1590減小至1353 nm,也隨著溶液流量減小,直徑由1521減小至1353 nm。 本研究以四點探針來量測纖維膜的電性,發現導電度隨著聚(3-己烷基噻吩)含量增加而增加,而摻雜碘離子後導電度有很顯著的提升,由未摻雜前的10xE-10至10xE-11 S/cm增加為10xE0至10xE1 S/cm,目前研究結果已發現纖維直徑對導電度影響並不顯著。 In this study, the conductive fiber of poly(3-hexylthiophene)(P3HT)/polyethylene oxide(PEO) has been fabricated using the electrospinning process. The effect of processing parameter and the polymer solution behavior on the morphology and conductivity of prepared conductive fiber will be discussed. The experimental data shows the pure P3HT and the mixture of P3HT and low molecular weight PEO of viscosity lower than 31.79 cp can not form the conductive fiber using the electrospinning process with single or coaxial syringe system. After the mixture of P3HT and high molecular weight PEO with the viscosity higher than 31.79 cp, it can be observed the bundle-type structure and bead-type structure from the single and coaxial syringe system, respectively. The fabricated product can be formed the net-type structure after the viscosity of mixture higher than 103.89 cp and 68.16 cp for the single and coaxial syringe system. For single syringe system, the diameter of conductive fiber decreases from 734 to 646 nm as working electrode increases from 20 to 40 kV. The diameter of conductive fiber decreases from 605 to 530 nm as working distance increases from 8 to 12 cm. As solution feed rate increases from 0.1 to 1 ml/hr, the diameter of conductive fiber decreases from 734 to 605 nm. The needle of single syringe was plugged up and it made the process very unstable. Similar behavior did not present in the coaxial syringe system, and the process was stable to form net-type structure. For coaxial syringe system, the diameter of conductive fiber decreases from 1590 to 1353 nm as working electrode increases from 18 to 24 kV. The diameter of conductive fiber decreases from 1590 to 1353 nm as solution feed rate increases from 1 to 0.6 ml/hr. The conductivity of specimens was measured by four-point probe method. The conductivity was significantly enhanced from 10xE-10~10xE-11 to 10xE0~10xE1 S/cm using doping Iod ion. It did not have the large difference of conductivity with different diameter of fiber. |
URI: | http://hdl.handle.net/11455/10310 | 其他識別: | U0005-2408200614195600 |
Appears in Collections: | 材料科學與工程學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.