Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10319
標題: 藥物釋放用Fe3O4/Pluronic奈米複合顆粒之製備與特性研究
Preparation and characterization of drug release Fe3O4/Pluronic nanocomposites
作者: 張嘉芝
Chang, Chia-Chih
關鍵字: Fe3O4;奈米氧化鐵;Pluronic
出版社: 材料科學與工程學系所
引用: 1. S.F. Hulber, J.C. Bokros, L.L. Hench, Ceramics in clinical application, Ed. By P. Vincenzini, Elservier Science Publishers B. V., 3-27, (1987). 2. B.D. Ratner, Biomaterials science : an introduction to materials in medicine, 2nd ed., San Diego, Elsevier, (2004). 3. 黃柏偉,奈米生醫材料技術發展趨勢與商機探討,經濟部技術處 (2004) 4. 戴麗華,聚異丙基丙烯醯胺/奈米中空二氧化矽顆粒藥物釋放材料之製備與特性研究,中興大學材料工程研究所碩士論文 (2008) 5. 李玉寶,奈米生醫材料,五南圖書 (2006) 6. M. Malmsten, Surfactants and polymers in drug delivery, Marcel Dekker, (2002). 7. K.G. Das, Controlled release techlogy-bioengineering aspects, John Wiley and Sons Inc., (1983). 8. R. Langer, Drug delivery and targeting, Nature, 392, 5-10, (1998). 9. A.K. Patri, I.J. Majoros, J.R. Baker, Dendritic polymer macromolecular carriers for drug delivery, Current Opinion in Chemical Biology, 6, 466-471, (2002). 10. T.M. Allen, P.R. Cullis, Drug delivery system:entering the mainstream, Science, 303, 1811-1822, (2004). 11. W. Tian, X.D. Fan, W. Chen, Y.Y. Lu, Research progress in polymeric drug delivery carriers, Polymer Materials Science and Engneering, 22, 4-8, (2006). 12. C. Moutinho, C. Matos, V. Balcão, Development of innovative nanotechnology-based drug delivery systems for cancer therapy, Biblioteca Digital, (2007). 13. J.R. Francis Szoka, Demetrios Papahadjopoulos, Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation, Ann N Y Acad Sci, 75, 4194-4198, (1978). 14. D.D. Lasic, P.M. Frederik, M.C.A. Stuart, Y. Barenholz, T.J. McIntosh, Gelation of liposome interior a novel method for drug encapsulation, FEBS Letters, 312, 255-258, (1992). 15. Bangham, Surrogate cells or Trojan horses. The discovery of liposomes, BioEssays, 17, 1081-1088, (1995). 16. V.P. Torchilin, Structure and design of polymeric surfactant-based drug delivery systems, Journal of Controlled Release, 73, 137-172, (2001). 17. R. Kircheis, L. Wightman, M. Kursa, E. Ostermann and E. Wagner, Tumor-targeted gene delivery: an attractive strategy to use highly active effector molecules in cancer treatment, Gene Therapy, 731–735, (2002). 18. C.M. Perry, R.N. Brogden, Goserelin:A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in benign gynecological disorders, Drugs, 51, 319–346, (1996). 19. I. Brigger, J. Morizet, G. Aubert, H. Chacun, M.J. Terrier-Lacombe, P. Couvreur, G. Vassal, Poly(ethylene glycol)-coated hexadecanoylcyanoacrylate nanospheres display a combined effect for brain tumor targeting, Journal of Pharmacology and Experimental Therapeutics, 303, 928–936, (2002). 20. A.J. Hollins, M. Benboutera, Y. Omidi, B. Zinselmeyer, A.G. Schatzlein, I.F. Uchegbu, S. Akhtar, Evaluation of generation 2 and 3 poly(propylenimine) dendrimers for the potential cellular delivery of antisense oligonucleotides targeting epidermal growth factor receptor, Pharmaceutical Research, 21, 458–466, (2004). 21. G. van den Mooter, B. Maris, C. Samyn, P. Augustijns, R. Kinget, Use of azo polymers for colon-specific drug delivery, Journal of Pharmaceutical Sciences, 86, 1321–1327, (1997). 22. L.E. Bromberg, E.S. Ron, Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery, Advanced Drug Delivery Reviews, 31, 197–221, (1998). 23. S.H. Yuk, S.H. Cho, S.H. Lee, pH/temperature-responsive polymer composed of poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide), Macromolecul- es, 30, 6856–6859, (1997). 24. K. Kataoka, A. Harada, Y. Nagasaki, Block copolymer micelles for drug delivery:design,characterization and biological significance, Advanced Drug Delivery Reviews, 47, 113-131, (2001). 25. J.J. Escobar-Chávez, M. López-Cervantes, A. Naïk, Y.N. Kalia, D. Quintanar-Guerrero, A. Ganem-Quintanar, Applications of thermo-reversible Pluronic F-127 gel in pharmaceutical formulation, Journal of Pharmaceutical Sciences, 9, 339-358, (2006). 26. Z. Gao, A. Eisenberg, A model of micellization for block copolymers in solutions, Macromolecules, 26, 7353-7360, (1993). 27. C. Allen, D. Maysinger, A. Eisenberg, Nano-engineering block copolymer aggregate for drug delivery, Colloids and Surfaces B:Biointerfaces, 16, 3-27, (1999). 28. 葉晨聖,鄭豐裕,磁性奈米材料之生醫檢測及應用,教育部 (2007) 29. K. Cornelis, C.S. Hurlburt, Manual of Mineralogy, Wiley, (1977). 30. G.H. Kwei, R.B. von Dreele, A. Williams, J.A. Goldstone, A.C. Lawson II, Warburton, Structure and valence from complementary anomalous X-ray and neutron powder diffraction, Journal of Molecular Structure, 223, 383-406, (1990). 31. M. Arruebo, R.F. Pacheco, M.R. Ibarra, J. Santamarіa, Magnetic nanoparticles for drug delivery, Nano Today, 2, 22-32, (2007). 32. Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroev, Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles, Chemistry of Materials, 8, 2209-2211, (1996). 33. C.Y. Hong, I.J. Jang, H.E. Horng, C.J. Hsu, Y.D. Yao, H.C. Yang, Ordered Structure in Fe3O4 Kerosene-based Ferrofluids, Journal of Applied Physics, 81, 4275-4277, (1997). 34. G.N. Rao, Y.D. Yao, Y.L. Chen, K.T. Wu, J.W. Chen, Particle size and magnetic field induced optical properties of magnetic fluid nanoparticles, Physical Review, 72, 031408-031414, (2005). 35. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical application, Biomaterials, 26, 3995-4021, (2005). 36. T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process, Journal of the American Chemical Society, 123, 12798-12801, (2001). 37. S. Sun, H. Zeng, Size-Controlled Synthesis of Magnetite Nanoparticles, Journal of the American Chemical Society, 124, 8204-8205, (2002). 38. H. Zeng, P.M. Rice, S.X. Wang, S. Sun, Shape-Controlled Synthesis and Shape-Induced Texture of MnFe2O4 Nanoparticles, Journal of the American Chemical Society, 126, 11458-11459, (2004). 39. C.R. Lin, R.K. Chiang, J.S. Wang, T.W. Sung, Magnetic properties of monodisperse iron oxide nanoparticles, Journal of Applied Physics, 99, 08N710-08N710-3, (2006). 40. S. Peng, C. Wang, J. Xie, S. Sun, Synthesis and Stabilization of Monodisperse Fe Nanoparticles, Journal of the American Chemical Society, 128, 10676-10677, (2006). 41. S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, Monodisperse MFe2O4 (M=Fe, Co, Mn) Nanoparticles, Journal of the American Chemical Society, 126, 273-279, (2004). 42. W.W. Yu, J.C. Falkner, C.T. Yavuz, V.L. Colvin, Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts, Chemical Communications, 24, 2306-2307, (2004). 43. A.S. Arbab, L.A. Bashaw, B.R. Miller, E.K. Jordan, B.K. Lewis, H. Kalish, J.A. Frank, Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging, Radiology, 229, 838-846, (2003). 44. P. Reimer, R. Weissleder, Development and experimental application of receptor-specific MR contrast media, Radiology, 36, 153-163, (1996). 45. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Application of magnetic nanoparticles in biomedicine, Journal of Physics D:Applied Physics, 36, 167-181, (2003). 46. U. Häfeli, W. Schütt, J. Teller, M. Zborowski, Scientific and clinical applications of magnetic carriers, Plenum Press, (1997). 47. I.F. Uchegbu, A.G. Schatzlein, Polymers in drug delivery, Taylor and Francis Group, (2006). 48. M.L. Adams, A. Lavasvnifar, G.S. Kwon, Amphiphilic block copolymers for drug delivery, Journal of Pharmaceutical Sciences, 92, 1343-1355, (2003). 49. A.V. Kabanov, E.V. Batrakova, V.Y. Alakhov, Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery, Journal of Controlled Release, 82, 189-212, (2002). 50. N. Rapoport, K. Caldwell, Structural transitions in micellar solutions of Pluronic P-105 and their effect on the conformation of dissolved Cytochrome C:an electron paramagnetic resonance investigation, Colloids and Surfaces B:Biointerfaces, 3, 217-228, (1994). 51. P. Alexandridis, T.A. Hatton, Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces:thermodynamics, structure, dynamics, and modeling, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 96, 1-46, (1995). 52. S. Saeki, N. Huwahara, M. Nakata, M. kaneko, Upper and lower critical solution temperatures in poly( ethylene glycol ) solutions, Polymer, 17, 685-689, (1976). 53. X. Liang, C. Guo, J. Ma, J. Wang, S. Chen, H. Liu, Temperature-Dependent Aggregation and Disaggregation of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Block Copolymer in Aqueous Solution, Journal of Physical Chemistry B, 111, 13217-13220, (2007). 54. S. Naito, A. Yokomizo, H. Koga, Mechanisms of drug resistance in chemotherapy for urogenital carcinoma, International Journal of Urology, 6, 427-439, (1999). 55. M. Kuwano, S. Toh, T. Uchiumi, H. Takano, K. Kohno, M. Wada, Multidrug resistance-associated protein subfamily transporters and drug resistance, Anticancer Drug Design, 14, 123-131, (1999). 56. V.Y. Alakhov, E.Y. Moskaleva, E.Y. Batrakova, A.V. Kabanov, Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer, Bioconjugate Chemistry, 7, 209-216, (1996). 57. M. Page, V.Y. Alakhov, Elimination of P-gp-mediated multidrug resistance by solubilization in Pluronic micelles, in:Proc. Annu. Meet. Am. Assoc. Cancer Res., 33, A3302, (1992). 58. A. Venne, S. Li, R. Mandeville, A. Kabanov, V. Alakhov, Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells, Cancer Research, 56, 3626-3629, (1996). 59. A.V. Kabanov, E.V. Batrakova, V.Y. Alakhov, Pluronic® block copolymers for overcoming drug resistance in cancer, Advanced Drug Delivery Reviews, 54, 759-779, (2002). 60. E.V. Batrakova, A.V. Kabanov, Pluronic block copolymers:Evolution of drug delivery concept from inert nanocarriers to biological response modifiers, Journal of Controlled Release, 130, 98-106, (2008). 61. K. Subramani, H. Hosseinkhani, A. Khraisat, M. Hosseinkhani, Y. Pathak, Targeting Nanoparticles as Drug Delivery Systems for Cancer Treatment, Current Nanoscience, 5, 135-140, (2009). 62. G.S. Kwon, T. Okano, Polymeric micelles as new drug carriers, Advanced Drug Delivery Reviews, 21, 107-116, (1996). 63. J.S. Tan, D.E. Butterfield, C.L. Voycheck, K.D. Caldwell, J.T. Li, Surface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats, Biomaterials, 14, 823-833, (1993). 64. A. Lavasanifar, J. Samuel, G.S. Kwon, Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery, Advanced Drug Delivery Reviews, 54, 169-190, (2002). 65. J.D. Pruitt, G. Husseini, N. Rapoport, W.G. Pitt, Stabilization of Pluronic P-105 Micelles with an Interpenetrating Network of N,N-Diethylacrylamide, Macromolecules, 33, 9306-9309, (2000). 66. G. Acharya, K. Park, Mechanisms of controlled drug release from drug-eluting stents, Advanced Drug Delivery Reviews, 58, 387-401, (2006). 67. J.R. Robinson, Sustained and Controlled Release Drug Delivery Systems, Marcel Dekker, (1978). 68. Y.W. Chien, Novel Drug Delivery Systems, Marcel Dekker, (1992). 69. H.C. Ansel, N.G. Popovich, L.V.J. Allen, Pharmaceutical Dosage Forms and Drug Delivery Systems, Williams and Wilkins, (1995). 70. K. Park, Controlled Drug Delivery:Challenges and Strategies, American Chemical Society, (1997). 71. W.M. Saltzman, Drug Delivery. Engineering Principles for Drug Therapy, Oxford University Press, (2001). 72. M.J. Rathbone, J. Hadgraft, S.R. Michael, Modified-Release Drug Delivery Technology, Marcel Dekker, (2003). 73. K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric Systems for Contolled Drug Release, Chemistry Review, 99, 3181-3198, (1999). 74. A.J. Rosengart, M.D. Kaminski, H. Chen, P.L. Caviness, A.D. Ebner, J.A. Ritter, Magnetizable implants and functionalized magnetic carriers:A novel approach for noninvasive yet targeted drug delivery, Journal of Magnetism and Magnetic Materials, 293, 633-638, (2005). 75. V.P. Torchilin, Drug targeting, European Journal of Pharmaceutical Science, 11, S81-S91, (2000). 76. H. Huang, T. Kowalewski, E.E. Remsen, R. Gertzmann, K.L. Wooley, Hydrogel-Coated Glassy Nanospheres:A Novel Method for the Synthesis of Shell Cross-Linked Knedels, Journal American Chemistry Society, 119, 11653-11659, (1997). 77. Y. Kakizawz, A. Harada, K. Kataoka, Environment-Sensitive Stabilization of Core-Shell Structure Polyion Complex Micelle by Reversible Cross-Linking of the Core through Disulfide Bond, Journal American Chemistry Society, 121, 11247-11248, (1999). 78. V. Bütün, N.C. Billingham, S.P. Armes, Synthesis of Shell Cross-Linked Micelles with Tunable Hydrophilic/Hydrophobic Core, Journal American Chemistry Society, 120, 12135-12136, (1998). 79. K.B. Thurmond Ⅱ, T. Kowalewski, K.L. Wooley, Water-Soluble Knedel-like Structures:The Preparation of Shell-Cross-Linked Small Particles, Journal American Chemistry Society, 118, 7239-7240, (1996). 80. M. Jaturanpinyo, A. Harada, X. Yuan, K. Kataoka, Preparation of Bionanoreactor Based on Core-Shell Structured Polyion Complex Micelles Entrapping Trypsin in the Core Cross-Linked with Glutaraldehyde, Bioconjugate Chemistry, 15, 344-348, (2004). 81. H.K. Kim, T.G. Park, Surface Stabilization of Diblock PEG-PLGA Micelles by Polymerization of N-Vinyl-2-pyrrolidone, Macromolecular Rapid Communications, 23, 26-31, (2002). 82. K.H. Bae, S.H. Choi, S.Y. Park, Y. Lee, T.G. Park, Thermosensitive Pluronic Micelles Stabilized by Shell Cross-Linking with Gold Nanoparticles, Langmuir, 22, 6308-6384, (2006). 83. S.H. Choi, J.H. Lee, S.M. Choi, T.G. Park, Thermally Reversible Pluronic/Heparin Nanocapsules Exhibiting 1000-Fold Volume Transition, Langmuir, 22, 1758-1762, (2006). 84. S. Chen, Y. Li, C. Guo, J. Wang, J. Ma, X. Liang, L.R. Yang, H.Z. Liu, Temperature-Responsive Magnetite/PEO-PPO-PEO Block Copolymer Nanoparticles for Controlled Drug Targeting Delivery, Langmuir, 23, 12669-12676, (2007). 85. J.J. Lin, J.S. Chen, S.J. Huang, J.H. Ko, Y.M. Wang, T.L. Chen, L.F. Wang, Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications, Biomaterials, 30, 5114-5124, (2009). 86. S. Rana, A. Gallo, R.S. Srivastava, R.D.K. Misra, On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery:Functionalization, conjugation and drug release kinetics, Acta Biomaterialia, 3, 233-242, (2007). 87. Q. Yuan, R. Venkatasubramanian, S. Hein, R.D.K. Misra, A stimulus-responsive magnetic nanoparticle drug carrier:Magnetite encapsulated by chitosan-grafted-copolymer, Acta Biomaterialia, 4, 1024-1037, (2008).
摘要: 
This study is focused on the preparation of Fe3O4/Pluronic nanocomposites containing the properties of targeted and thermosensitive function used as drug carries. The monodispersed 6 nm and 13 nm Fe3O4 nanoparticles have been prepared through thermal decomposition process. To improve the biocompartible property of Fe3O4 nanoparticles, the fabricated nanoparticles were modified by 11-aminoundecanoic acid tetramethylammonium salt to change the hydrophobic surface of Fe3O4 to be hydrophilic characteristic. Finally, the Pluronic with different molecular weights can be grafted on the hydrophilic surface of Fe3O4 nanoparticles by esterification reaction. The structure and properties of fabricated nanoparticles can be analyzed by FT-IR, TGA, TEM, and DSC. These results show that the Fe3O4/Pluronic nanocomposites with targeted and thermosensitive properties have been suceessfully prepared.
The DSC results show that the Fe3O4/Pluronic nanocomposites with different molecular weights of Pluronic contain endothermic peak at about 30~37 ℃, which is close to the human body temperature and can be suitable for use as drug carrier. Therefore, the behavior of drug loading and drug releasing of nanocomposites coated Pluronic with different molecular weight ( PF127: PEO100-PPO65-PEO100 and P105: PEO37-PPO56-PEO37 ) can be investigated.
The results of drug loading in the lower temperature are higher than the data obtained in the higher temperature because of the polymer chains are in sparsed state in low temperature, which could induce the loading of drug into the drug carrier. However, the results of drug releasing show the cumulative release of coated PF127 is low. The cumulative release of H6-PF127 and H13-PF127 were 29.2% and 34.4%. Because the polymer chains were compressed in high temperature to form a barrier, which may result in the relative low drug releasing rate. Finally, the Fe3O4 nanoparticles coated by different Pluronic polymers can be used as temperature control to affect the drug release rate purposes.

本研究的主要目的為製備Fe3O4/Pluronic奈米複合顆粒,兼具靶向性及溫感特性之藥物載體。本研究使用兩種的有機金屬錯合物,經由XRD、TEM、FT-IR及SQUID等結果顯示,成功地利用高溫熱裂解法製備出具有單一分散性的奈米Fe3O4磁性顆粒,平均粒徑分別約為6 nm與13 nm。所製備單一分散性的奈米Fe3O4磁性顆粒具有親油性表面特性,為了後續生物相容性研究,本研究並利用兩性界面活性劑11-aminoundecanoic acid tetramethylammonium salt進行奈米Fe3O4磁性顆粒的親水性改質,利用TEM、FT-IR、SQUID及沉降圖等結果顯示,成功地將奈米Fe3O4磁性顆粒的疏水性表面改質為親水性表面,以提升生物可利用性。最後,利用酯化反應將不同分子量的Pluronic高分子,分別披覆於奈米Fe3O4磁性顆粒表面,由FT-IR、TEM、DSC及TGA等結果顯示,成功地製備出兼具靶向性及溫感特性的Fe3O4/Pluronic複合奈米顆粒。
經由DSC的結果顯示,披覆不同分子量的Pluronic高分子之奈米Fe3O4磁性複合顆粒,皆在約30~37℃得到吸熱峰,此溫度範圍接近人體,因此Fe3O4/Pluronic複合奈米顆粒適合做為藥物載體。因此本研究將探討披覆不同分子量的Pluronic高分子(PF127:PEO100-PPO65-PEO100及P105:PEO37-PPO56-PEO37),對於模擬藥物吸附與藥物釋放的影響進行觀察。
由模擬藥物吸附結果,顯示於低溫的吸附量會大於高溫,由於在低溫時,其高分子鏈段為疏張狀態,利於模擬藥物進入此藥物載體。然而,模擬藥物的釋放結果,顯示披覆PF127高分子的累積釋放率較低,由於在高溫時,其高分子鏈段為壓縮狀態所形成的立體障礙較大,造成模擬藥物釋放率較為緩慢。由此可知,可藉由不同Pluronic高分子的披覆並利用溫度的控制,達到調控其藥物的釋放率之目的。
URI: http://hdl.handle.net/11455/10319
其他識別: U0005-2607201116102800
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.