Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10325
標題: 以不同交聯劑製備多孔性三維明膠支架及其特性研究
Preparation and characterization of porous three-dimensional gelatin scaffold using different crosslinking agents
作者: 張文馨
Chang, Wen-Hsin
關鍵字: gelatin;明膠;crosslinking agent;genipin;PBAAM;freeze-drying.;交聯劑;綠槴子素;丙烯雙丙烯醯胺;冷凍乾燥法
出版社: 材料科學與工程學系所
引用: [1] http://en.wikipedia.org/wiki/Tissue_engineering. [2] 徐善慧,陳俊宇。巧奪天工的人類智慧─組織工程。科學發展356期,2002,4-9。 [3] 宋信文,梁晃千。建立人類的身體工房─組織工程。科學發展 362期,2003,6-11。 [4] R. Langer, J.P. Vacanti. Tissue engineering. Science 260 (1993) 920-926. [5] Peter X. Ma. Scaffolds for tissue fabrication. Materials Today 7 (2004) 30-40. [6] 曾清秀,呂恒綜,李永全。幫細胞蓋一個家─組織工程用支架。科學發展 356期,2002,10-13。 [7] N. C. Hunt, R. M. Shelton, L. M. Grover. Reversible mitotic and metabolic inhibition following the encapsulation of fibroblasts in alginate hydrogels. Biomaterials 30 (2009) 6435-6443. [8] D. W. Hutmacher. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21 (2000) 2529-2543. [9] S.-M. Lien, L.-Y. Ko, T.-J. Huang. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomaterialia 5 (2009) 670–679. [10] J. Shi, A. R. Votruba, O. C. Farokhzad, R. Langer. Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Letters 10 (2010) 3223-3230. [11] V. Karageorgiou, D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26 (2005) 5474–5491. [12] D. M. Yoon, J.P. Fisher. Natural and Synthetic Polymeric Scaffolds. Biomedical Materials (2009) 415-442. [13] J. C. Middleton, A. J. Tipton. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21 (2000) 2335-2346. [14] K. Y. Lee, D. J. Mooney. Hydrogels for Tissue Engineering. Chemical Reviews 101 (2001) 1869-1879. [15] 湯家潤。組織工程中的膠原蛋白。科學發展 380期,2004,18-23。 [16] A. Bigi, G. Cojazzi, S. Panzavolta, N. Roveri, K. Rubini. Stabilization of gelatin films by crosslinking with genipin. Biomaterials 23 (2002) 4827–4832. [17] A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini, N. Roveri. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 22 (2001) 763-768. [18] http://en.wikipedia.org/wiki/Gelatin. [19] http://www.sizes.com/units/bloom.htm. [20] http://sigma-aldrich.com. [21] P. X. Ma, P. D., J.-W. Choi, M. S. Biodegradable Polymer Scaffolds with Well-Defined Interconnected Spherical Pore Network. Tissue engineering 7 (2001) 23-39. [22] A. G. Mikos, J. S. Temenoff. Formation of highly porous biodegradable scaffolds for tissue engineering. Biotechnology 3 (2000) 1-6. [23] A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer, D. N. Winslow, J. P. Vacanti. Preparation and Characterization of Poly(L-lactic acid) Foams. Polymer 35 (1994) 1068-1077. [24] A. G. Mikes, G. Sarakinos, S. M. Leite, J. P. Vacant, R. Langer. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14 (1993) 323-330. [25] Y. S. Nam, J. J. Yoon, T. G. Park. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J. Biomed. Mater. Res. 53 (2000) 1-7. [26] D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti, R. Langer. Novel approach to fabricate porous sponges of ploy (D, L- lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17 (1996) 1417-1422. [27] Y. S. Nam, T. G. Park. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. Journal of Biomedical Materials Research 47 (1999) 8-17. [28] H. Lo, S. Kadiyala, S. E. Guggino, K.W. Leong. Poly (L-lactic acid) foams with cell seeding and controlled-release capacity. Journal of Biomedical Materials Research 30 (1996) 475-484. [29] D. J. Mooney, C.L. Mazzoni, C. Breuer, K. McNamara, D. Hern, J. P. Vacanti, R. Langer. Stabilized polyglycolic acid fibrebased tubes for tissue engineering. Biomaterials 17 (1996) 115-124. [30] L. E. Freed, J. C. Marquis, A. Nohria, J. Emmanual, A. G. Mios, R. Langer. Neocartilage formation in vitro and in vivo using cell cultured on synthetic biodegradable polymers. Journal of Biomedical Materials Research 27 (1993) 11-23. [31] H.-W. Kang, Y. Tabata, Y. Ikada. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20 (1999) 1339-1244. [32] K. Whang, C. H. Thomas, K. E. Healy, G. Nuber. A novel method to fabricate bioabsorbable scaffolds. Polymer 36 (1995) 837-842. [33] P. W. Atkins. The of physical chemisty. Oxford university press 1996. [34] H.-W. Kang, Y. Tabata, Y. Ikada. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20 (1999) 1339-1344. [35] S. V. Madihally, H. W. T. Matthew. Porous chitosan scaffolds for tissue engineering. Biomaterials 20 (1999) 1133-1142. [36] R. Tu, C. L. LU, K. Thyagarajan, E. Wang, H. Nguyen, S. Shen, C. Hata, R. C. Quijano. Kinetic study of collagen with polyepoxy fixatives. Journal of Biomedical Materials Research 27 (1993) 3-9. [37] C. H. Yao, B. S. Liu, C. J. Chang, S. H. Hsu, Y. S. Chen. Preparation of networks of gelatin and genipin as degradable biomaterials. Materials Chemistry and Physics 83 (2004) 204–208. [38] C. E. Visser, A. B. Voute, J. Oosting, M. E. Boon, L. P. Kok. Microwave irradiation and cross-linking of collagen. Biomaterials 13 (1992) 34-37. [39] H. W. Sung, S. H. Shen, R. Tu, D. Lin, C. Hata, Y. Noishiki, Y. Tomizawz, R. C. Quijano. Comparison of cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds. ASAIO 39 (1993) 532-536. [40] C. J. Wang, S. W. Wang, J. K. Lin. Suppressive effect of geniposide on the hepatotoxicity and hepatic DNA binding of aflatoxin B1 in rats. Caner Letters 60 (1991) 95-102. [41] T. H. Tseng, C. Y. Chu, C. J. Wang. Inhibition of penta-acetyl geniposide on AFB1-induced genotoxicity in C3H10T1/2 cells. Caner Letters 62 (1992) 233-242. [42] S. Fujikawa, T. Yokota, K. Koga, S. I. Kumada. The continuous hydrolysis of geniposide to genpin using immobilized β-glucosidase on calcium alginate gel. Biotechnology Letter 9 (1987) 697-702. [43] H. W. Sung, R. N. Huang, L. L. H. Huang, C. C. Tsai. In vitro evalualtion of cytotoxicity of a naturally occurring crosslinking reagent for biological tissue fixation. Journal of Biomaterials Science-Polymer Edition 10 (1999) 63-78. [44] C. C. Tsai, R. N. Huang, H. W. Sung, H. C. Liang. In vitro Evaluation of the genotoxicity of a naturally occurring crosslinking agent (genipin) for biological tissue fixation. Journal of Biomedical Materials Research 52 (2000) 58-65. [45] R. Touyama, Y. Takeda, K. Inoue, I. Kawamura, M. Yatsuzuka, T. Ikumoto, T. Shingu, T. Yokoi, H. Inouye. Studies on the blue pigments produced from genipin and methylamine. I. Structures of the brownish-red pigments, intermediates leading to the blue pigments. Chem Pharm Bull 42 (1994) 668-673. [46] H. W. Sung, I. L. Liang, C. N. Chen, R. N. Huang, H. F. Liang. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). Journal of Biomedical Materials Research 55 (2001) 538-546. [47] H. C. Liang, W. H. Chang, H. F. Liang, M. H. Lee, H. W. Sung. Crosslinking Structures of Gelatin Hydrogels Crosslinked with Genipin or a Water-Soluble Carbodiimide. Journal of Applied Polymer Science 91 (2004) 4017-4026. [48] A. Jayakrishnan, S. R. Jameela. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials 17 (1996) 471-484. [49] A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini, N. Roveri. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 22 (2001) 763-768. [50] E. W. Flitney. The time course of fixation of albumin by formaldehyde, glutaraldehyde, acrolein and other higher aldehydes. F.R. Microsc. Soc. 85 (1996) 354-364. [51] M. E. Nimni, D. Cheung, B. Strates, M. K. Odama, K. Sheikh. Bioprosthesis derived from cross-linked and chemically modified collagenous tissues. M. E. Nimni editor Collagen, Biotechnology Florida, CRC Press Inc. 3(1988) 1-37. [52] H. W. Sung, Y. Chang, C. T. Chiu, C. N. Chen, H. C. Liang. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent. Biomaterials 20 (1999) 1759-1772. [53] J. M. Lee, H. H. L. Edwards, C. A. Pereira, S. I. Samii. Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). Journal of Biomedical Materials Research in Medicine 7 (1996) 531-541. [54] H. W. Sung, D. M. Huang, W. H. Chang, R. N. Huang, J. C. Hsu. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study. Journal of Biomedical Materials Research 46 (1999) 520-530. [55] L. H. H. Olde Damink, P.J. Dilkstra, M. J. A. van Luyn, P. B. van Wachem, P. Nieuwenhuis, J. Feijen. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 17 (1996) 765-773. [56] Z. Grabrek, J. Gergely. Zero-Length crosslinking procedure with the use of active esters. Analytical Biochemistry 185 (1990) 131-135. [57] H. M. Powell, S. T. Boyce. EDC cross-linking improves skin substitute strength and stability. Biomaterials 27 (2006) 5821–5827. [58] D. F. Gibbons. Tissue response to resorbable synthetic polymers. Degradation Phenomena on Polymeric Biomaterials (1992) 97-104. [59] H. Rosen, J. Kohn, K. Leong, R. Langer. Bioerodible polymers for controlled release systems. Controlled Release Systems 83 (1988) 83-110. [60] R. W. Lenz, N. A. Peppas, R. S. Langer. Biodegradable polymers. Advances in Polymer Science 107 (1993) 1-40. [61] R. Langer, N. Peppas. Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review. Journal of Macromolecular Science- Reviews in Macromolecular Chemistry & Physics 23 (1983) 61-126. [62] T. Walter, J. Augusta, R.-J. Mtiller, H. Widdecke, J. Klein. Enzymatic degradation of a model polyester by lipase from Rhizopus delemar. Enzyme and Microbial Technology 17 (1995) 216-224. [63] http://sa.ylib.com/saeasylearn/saeasylearnshow.asp?FDocNo=1292&CL=87. [64] D. F. Williams. Biocompatibility of clinical implant materials. CRC Press, Inc. 1 (1981) 1-45. [65] A. Howard, S. R. Pelc. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity 6 (1953) 261-273. [66] N. A. Campbell, L. G. Mitchell, J. B. Reece. Biology concepts and connections, second edition (1996) 131-133. [67] http://big5.39kf.com/cooperate/book/05/cell-biology/2007-09-25-411542.shtml. [68] http://en.wikipedia.org/wiki/Mitosis. [69] K. Anselme. Osteoblast adhesion on biomaterials. Biomaterials 21 (2000) 667-681. [70] R. Rajaraman, D. E. Rounds, S. P. S. Yen, A. Rembaum. A scanning electron microscope study of cell adhesion and spreading in vitro. Exptl Cell Research 88 (1974) 327-339. [71] C. Chatelet, O. Damour, A. Domard. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 22 (2001) 261-268. [72] S.-M. Lien, W.-T. Li, T.-J. Huang. Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method. Materials Science and Engineering C 28 (2008) 36-43. [73] F. Zhang, C. He, L. Cao, W. Feng, H. Wang, X. Mo, J. Wang. Fabrication of gelatin–hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. International Journal of Biological Macromolecules 48 (2011) 474–481. [74] Y. Takahashi, M. Yamamoto, Y. Tabata. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials 26 (2005) 3587–3596. [75] J. H. Lee, H. W. Jung, I. K. Kang, H. B. Lee. Cell behaviour on polymer surfaces with different functional groups. Biomaterials 15 (1994) 705-711. [76] B. D. Boyan, T. W. Hummert, D. D. Dean, Z. Schwartz. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17 (1996) 137-146.
摘要: 
明膠為具有良好生物可降解性、生物相容性之天然高分子,則廣泛運用於製備生醫材料支架方面,但由於機械性質、熱穩定性不佳與降解速率過快的因素,本研究將複合不同濃度綠槴子素、戊二醛、EDC/NHS、PBAAM及綠槴子素合併使用與明膠進行交聯處理,使明膠具有較穩固的結構並補強純明膠材料的機械性質和抗降解性,再利用冷凍乾燥法製備出具多孔性三維之明膠支架,以成為理想的生物植入支架。研究中並同時探討交聯劑種類和濃度對支架的物理性質、結構穩定性以及體外生物相容性之影響,評估此明膠支架是否利於組織之再生及修復,進而應用於生醫領域上。
UV-Vis可觀察交聯明膠支架之交聯指數,添加不同濃度之綠槴子素、戊二醛、EDC/NHS、PBAAM/綠槴子素與明膠交聯處理之支架交聯程度分別約為91%、25~81%、64~83%、86~90%。FT-IR結果顯示交聯明膠支架皆有著生物高分子蛋白質所擁有的醯胺基之特性峰。以S.E.M觀察明膠支架具有良好相互連結的多孔結構,孔徑範圍為200~520μm間的三維空間結構,具有符合細胞向內生長的環境;吸水率會隨著明膠支架之交聯程度較高,結構較穩固,而吸水率會減低,且製備出明膠支架的孔隙率介於77~92%間。機械性質檢測結果顯示添加交聯劑確實能夠有效提升純明膠支架之機械強度,尤以綠槴子素及PBAAM/綠槴子素交聯處理明膠支架的機械強度增強34~89倍。
在體外生物降解測試中,經由交聯鍵結作用可以提升支架結構的穩定性,有效減緩純明膠的降解速率,從重量損失結果可證實PBAAM/綠槴子素交聯明膠支架中較符合多孔性支架對於細胞培養,是生物可降解與可提供足夠空間與時間待細胞生長和組織形成。在生物相容性測試中,植入鼠的纖維母細胞(L929)至支架共培養後,並經由螢光顯微鏡與S.E.M結果顯示,以合併使用PBAAM與綠槴子素交聯明膠支架有利於細胞正常貼附與生長,具有良好的生物相容性。
綜合上述結果,本研究中以PBAAM/綠槴子素交聯明膠支架中具有較佳交聯指數、適當孔徑大小、吸水率、理想孔隙率、機械強度提升、適當的生物降解速率以及合適細胞貼附增生的環境與良好的生物相容性,研究中製備出明膠支架利於組織之再生及修復,可作為理想組織工程支架植入材,進而應用於生醫領域上。

Gelatin, a natural polymer, shows high biocompatibility and biodegradability and can be widely used in biomedical application. In this study, the porous and three-dimensional gelatin scaffolds with various concentration of crosslinking agents, such as genipin, glutaraldehyde, EDC/NHS and PBAAM/genipin, were successfully fabricated using freeze-drying technique.
The results of UV-Visible spectrophotometer (UV-Vis) show the crosslinking index of gelatin scaffold of genipin, glutaraldehyde, EDC/NHS and PBAAM/genipin are in the range of 91%, 25~81%, 64~83%, 86~90%, respectively, depending on their concentration. The data of Fourier Transform Infrared spectrophotometer (FT-IR) of crosslinked gelatin scaffold represent the amide group of characteristic peaks of biopolymer proteins. The images of scanning electron microscope (SEM) of gelatin scaffold reveal the well interconnected porous structure, and the pore size is in the range of 200~520μm between three-dimensional structure for cell ingrown environment. Water absorption of gelatin scaffold is related to crosslinking index. While crosslinking index is increased, the structure is more stable, leading to the lower water absorption. The porosity of gelatin scaffold is between 77~92%. The mechanical properties of gelatin scaffold with genipin and PBAAM/genipin could be significantly enhanced 34~89 times in magnitide compared to the pure gelatin scaffold.
For the in vitro biodegradation test, the stability of gelatin structure could be enhanced by the crosslinking process and the degradation rate of gelatin scaffold decreased by adding crosslinking agents. The weight loss of gelatin scaffold with PBAAM/genipin confirms that biodegradable porous structure could provide enough space to be cell growth and tissue formation. In biocompatible test, mouse fibroblasts cell (L929) were seeded into gelatin scaffold. The images of fluorescent microscopy and SEM show that gelatin scaffold with PBAAM/genipin is biocompatible and favorable for cell attachment and growth.
The gelatin scaffold with PBAAM/genipin containing better crosslinking index, appropriate pore size, water adsorption and porosity, suitable mechanical strength and biodegradable rate can prodive favorable environment of cell adhesion, proliferation, and well biocompatability. The physical properties of fabricated gelatin scaffolds indicate that the addition of crosslinking agent can improve their biodegradable structure. Preparation of gelatin scaffold applied in the organization of the regeneration/repair and tissue engineering could be used in the applications of implanted material and biomedical field.
URI: http://hdl.handle.net/11455/10325
其他識別: U0005-2607201116385000
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.