Please use this identifier to cite or link to this item:
標題: 以植入模版法合成單一分散多孔殼層結構之In2O3中空微球及其光觸媒與氣體感測之研究
Synthesis, photocatalysis, and gas-sensing property of monodisperse In2O3 hollow spheres by template implantation.
作者: 曾子聰
Tseng, Tzu-Tsung
關鍵字: Indium Oxide;氧化銦;Template Synthesis;Hollow sphere;Photocatalysis;CO gas sensor;硬質模版;中空微球;光觸媒;CO 氣體感測
出版社: 材料科學與工程學系所
引用: [1] D. G. Shchukin, R. A. Caruso, Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration, Chem. Mater. 16 (2004) 2287-2292. [2] L. Ge, Preparation of novel visible-light-driven In2O3-CaIn2O4 composite photocatalyst by sol-gel method, J. Sol-Gel Sci. Technol. 44 (2007) 263-268. [3] T. Yan, X. Wang, J. Long, P. Liu, X. Fu, G. Zhang, X. Fu, Urea-based hydrothermal growth, optical and photocatalytic properties of single-crystalline In(OH)3 nanocubes, J. Colloid Interf. Sci. 325 (2008) 425-431. [4] L. Y. Chen, Z. X. Wang, Z. D. Zhang, Corundum-type tubular and rod-like In2O3 nanocrystals: synthesis from designed InOOH and application in photocatalysis, New J. Chem. 33 (2009) 1109-1115. [5] Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature, 414 (2001) 625-627. [6] J. Sato, N. Saito, H. Nishiyama, Y. Inoue, Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. I. influences of preparation conditions on activity, J. Phys. Chem. B 107 (2003) 7965-7969. [7] N. A. Kelly, T. L. Gibson, Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting, Int. J. Hydrogen Energ. 31 (2006) 1658 - 1673. [8] M. Curreli, C. Li, Y. Sun, B. Lei, M.A. Gundersen, M.E. Thompson, C. Zhou, Selective functionalization of In2O3 nanowire mat devices for biosensing applications, J. Am. Chem. Soc. 127 (2005) 6922-6923. [9] S. Bianchi, E. Comini, M. Ferroni, G. Faglia, A. Vomiero, G. Sberveglieri, Indium oxide quasi-monodimensional low temperature gas sensor, Sens. Actuators B Chem. 118 (2006) 204-207. [10] Z. Guo, J. Liu, Y. Jia, X. Chen, F. Meng, M. Li, J. Liu, Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres, Nanotechnology 19 (2008) 345704. [11] K. I. Choi, H. R. Kim, J. H. Lee, Enhanced CO sensing characteristics of hierarchical and hollow In2O3 microspheres, Sens. Actuators B Chem. 138 (2009) 497-503. [12] J. H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sens. Actuators B Chem. 140 (2009) 319-336. [13] X. W. Lou, L. A. Archer, Z. Yang, Hollow micro-/nanostructures: synthesis and applications, Adv. Mater. 20 (2008) 3987-4019. [14] A. S. Deshapande, D. G. Shchukin, E. Ustinovich, M. Antonietti, R. A. Caruso, Titania and mixed titania/aluminum, gallium, or indium oxide sphere: sol-gel/template synthesis and photocatalytic, Adv. Funct. Mater. 15 (2005) 239-245. [15] H. Xu, S. Ding, W. Wei, C. Zhang, X. Qu, J. Liu, Z. Yang, Template synthesis of tin-doped indium oxide (ITO) polymer and the corresponding carbon composite hollow colloids, Colloid. Polym. Sci. 285 (2007) 1101-1107. [16] N. Du, H. Zhang, J. Chen, J. Sun, B. Chen, D. Yang, Metal oxide and sulfide hollow spheres: layer-by-layer synthesis and their application in lithium-ion battery, J. Phys. Chem. B 112 (2008) 14836-14842. [17] W. Cho, Y. H. Lee, H. J. Lee, M. Oh, Systematic transformation of coordination polymer particles to hollow and non-hollow In2O3 with pre-defined morphology, Chem. Commun. (2009) 4756-4758. [18] T. Suzuki, K. Okazaki, S. Suzuki, T. Shibayama, Nanosize-controlled syntheses of indium metal particles and hollow indium oxide particles via the sputter deposition technique in ionic liquids, Chem. Mater. 22 (2010) 5209-5215. [19] H. Zhu, K. Yao, H. Zhang, D. Yang, InOOH hollow spheres synthesized by a simple hydrothermal reaction, J. Phys. Chem. B 109 (2005) 20676-20679. [20] B. Li, Y. Xie, M. Jing, G. Rong, Y. Tang, G. Zhang, In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis, Langmuir 22 (2006) 9380-9385. [21] P. Zhao, T. Huang, K. Huang, Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes, J. Phys. Chem. C 111 (2007) 12890-12897. [22] L. Y. Chen, Y. G. Zhang, W. Z. Wang, Z. D. Zhang, Tunable synthesis of various hierarchical structures of In(OH)3 and In2O3 assembled by nanocubes, Eur. J. Inorg. Chem. (2008) 1445-1451. [23] L. Liu, H. Liu, H. Z. Kou, Y. Wang, Z. Zhou, M. Ren, M. Ge, X. He, Morphology control of β-In2S3 from chrysanthemum-like microspheres to hollow microspheres: synthesis and electrochemical properties, Cryst. Growth Des. 9 (2009) 113-117. [24] A. Gurlo, G. Miehe, R. Riedel, Surfactant-free self-assembly route to hollow In2O3 microspheres, Chem. Commun. 19 (2009) 2747-2749. [25] J. Yu, B. Huang, Z. Wang, X. Qin, X. Zhang, P. Wang, Self-template synthesis of CdIn2O4 hollow spheres and effects of Cd/In molar ratios on its morphologies, Inorg. Chem. 48 (2009) 10548-10552. [26] F. Caruso, R. A. Caruso and H. M
本研究使用商用高分子微球做為模版,前趨物 InCl3 於75oC之C2Cl4 溶劑解離成 In3+ 離子,與高分子模版表面形成螯合 (chelate) 反應並植入模版表層,從 XPS能譜分析,In3+ 離子與高分子模版之羧酸根形成 In-O 鍵結,隨著反應時間的增加,In3+ 除了形成In-O之外,同時也形成了In-OH鍵結;將微球模版於200-600oC 空氣氣氛進行熱處理,發現於熱處理溫達 500oC之後已形成 bcc 結構之 In2O3中空微球。本研究合成之中空微球除了具備單一粒徑尺寸的優點,另外,相較於已知文獻,吾人合成之單一成份 In2O3 中空微球,具備相對較高之比表面積 (B.E.T. = 260 m2 g-1)。透過改變製程參數 (如:前驅物濃度、反應時間與反應溫度),發現可以控制中空微球之粒徑尺寸與殼層結構,例如隨著InCl3濃度的增加,中空微球尺寸由InCl3 添加0.01g 時之 500nm 增加至添加0.1g時之 1μm,中空微球的比表面積則由 260 減少至15.1 m2g-1,殼層結構之孔洞體積 (B.J.H. cumulative pore volume) 則由 0.44 減少至 0.05 cm3g-1,顯示殼層結構隨著前驅物濃度的增加而緻密化。利用亞甲基藍 (methylene blue) 水溶液,並以 UV 光源照射,觀察 In2O3 中空微球殼層結構對於MB 染料之光觸媒性質影響,在 UV 光照射 30 分鐘後,發現比表面積54.7 m2g-1之中空微球可使MB 水溶液濃度降解 52%,經過 UV 光照射120分鐘,MB 水溶液濃度降解了 72%,相較於單純之 MB 水溶液,濃度減少約 44%。另外,也發現改變比表面積可以影響 CO 氣體感測性質,吾人發現隨著中空微球之比表面積增加 (15.1 增加至 260 m2g-1),中空微球對於 CO 氣體之敏感性 (sensitivity, S) 由 15% 增加至 42%。

Indium oxide (In2O3) microspheres with hollow interiors have been prepared by a facile implantation route which enables indium ions released from indium-chloride precursors to chelate with and implant into nonporous polymeric templates in C2Cl4 solvent at 75 oC. The templates are then removed upon calcination at 500oC in air atmosphere, forming monodisperse hollow In2O3 particles of bcc structure which have a high surface area (260m2g-1). The particle size and shell structure of hollow sphere can be altered by synthesis parameter (e.g., InCl3 concentration, reaction time and reaction temperature). For example, average particle size of the hollow particles is increased from 500 nm (InCl3 0.01g) to 1μm (InCl3 0.1g), as well as the specific surface area from 15.1 to 260m2g-1, and pore volume from 0.44 to 0.05cm3g-1. For the hollow In2O3 particles with a high surface area (54.7 m2 g-1), an enhanced photocatalytic efficiency (up to ~ one-fold increase) against methylene blue (MB) dye is obtained under UV exposure for the aqueous In2O3 colloids with a dilute solids concentration of 0.02 wt.%. The surface area of hollow In2O3 particles is also an important index for CO gas sensing property. Gas sensitivity is raised from 15 to 42% with increasing surface area (15.1 to 260 m2g-1).
其他識別: U0005-2608201116173000
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.