Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10343
標題: 以電漿輔助化學氣相沈積法在超硬碳化鎢基材上鍍著類鑽碳膜與機械性質研究
Growth and Mechanical Properties of Diamond-Like Carbon Films on Superhard Tungsten Carbides prepared by Plasma-Enhanced Chemical Vapor Deposition
作者: 林建男
Lin, Jiann-Nan
關鍵字: DLC;類鑽碳膜;Mechanical Properties;Tribological properties;Tungsten Carbides;機械性質;磨潤性質;碳化鎢
出版社: 材料科學與工程學系所
引用: [1] F.P. Bundy, H.T. Hall, H.M. Strong, and R.H. Wentorf, “Man-Made Diamonds”, Nature, 176 (1955) 51. [2] S. Aisenberg and R. Chabot, “Ion-beam deposition of thin film of diamond-like carbon”, Journal of Applied Physics 42 (1971) 2953. [3] S.H. Yang and M. Yokoyama, “Electron emission behaviors of polycrystalline diamond-coated silicon emitters”, Journal of Applied Physics 38 (1999) 209. [4] A. Grill, “Electrical and optical properties of diamond-like carbon”, Thin Solid Films 355-356 (1999) 189. [5] G. Reisel, B. Wielage, S. Steinhäuser , and H. Hartwig,“DLC for tools protection in warm massive forming”, Diamond and Related Materials 12 (2003) 1024. [6] G. Dearnaley and J.H. Arps, “Biomedical applications of diamond-like carbon (DLC) coatings: A review”, Surface and Coatings Technology 200 (2005) 2518. [7] V.G. Litovchenko and N.I. Klyui, “Solar cells based on DLC film – Si structures for space application”, Solar Energy Materials and Solar Cells 68 (2001) 55. [8] A. Erdemir, C. Bindal, J. Pagan, and P. Wilbur, “Characterization of transfer layers on steel surfaces sliding against diamond-like hydrocarbon films in dry nitrogen”, Surface and Coatings Technology 76-77 (1996) 559. [9] C.L. Chang, J.Y. Jao, T.C. Chang, W.Y. Ho, D.Y. Wang, “Influence of Bi-layer Period Thickness on the Residual Stress, Mechanical and Tribological Properties of Nanolayered TiAlN/CrN Multilayer Coatings”, Science 81 (2007) 604. [10] M.G. Kim, K.R. Lee, and K.Y. Eun, “Tribological behavior of silicon-incorporated diamond-like carbon films”, Surface and Coatings Technology 112 (1999) 204. [11] Q. F. Huang, S. F. Yoon, Rusli, K. Chew, and J. Ahn, “Characterization of metal-containing carbon films using Raman scattering”, Journal of Applied Physics 90 (2001) 4520. [12] 鈴木秀人,池永勝著,陳克紹 編譯,“DLC成膜技術”,全華科技圖書(2005)。 [13] I.M. Buckley-older and A.T. Collins, “Active electronic applications for diamond”, Diamond and Related Materials 1 (1992) 1083. [14] 陳培麗,“科儀新知”,13 (1991) 82。 [15] F. Demichelis, A. Tagliaferro, and D.D. Gupta, “Diamond-like properties of amorphous carbon and hydrogenated amorphous carbon thin films”, Surface and Coatings Technology 47 (1991) 218 . [16] F.M. Kimock and B.J. Knapp, “Commercial applications of ion beam deposited diamond-like carbon(DLC) coatings”, Surface and Coatings Technology 56 (1993) 273 . [17] J.C. Angus and C.C. Hayman, “Low-Pressure, Metastable Growth of Diamond and "Diamondlike" Phases”, Science 241 (1988) 913. [18] A.C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B 61 ( 2000) 14095. [19] C.D. Martino, F. Demichelis, and A. Tagliaferro, “Comparison of bulk and surface structure in hydrogenated amorphous carbon films”, Diamond and Related Materials 4 (1995) 1210. [20] X. Wang, H. Harris, H. Temkin, S. Gangopadhyay, M.D. Strathman, and M. West, “Determination of oscillator strength of C-F vibrations in fluorinated amorphous-carbon films by infrared spectroscopy”, Applied Physics Letters 78 (2001) 3079 . [21] E. Tomasella, C. Meunier, and S. Mikhailov, “a-C:H thin films deposited by radio-frequency plasma: influence of gas composition on structure, optical properties and stress levels ”, Surface and Coatings Technology 141 (2001) 286. [22] S. Logothetidis, “Hydrogen‐free amorphous carbon films approaching diamond prepared by magnetron sputtering”, Applied Physics Letters 69 (1996) 158. [23] H. Lee, I.Y. Kim, S.S. Han, B.S. Bae, M.K. Choi, and I.S. Yang, “Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films”, Journal of Applied Physics 90 (2001) 813. [24] T.A. Friedmann, K.F. McCarty, J.C. Barbour, M.P. Siegal, and D.C. Dibble, “Thermal stability of amorphous carbon films grown by pulsed laser deposition”, Applied Physics Letters 68 (1996) 1643. [25] T.W. Mercer, N.J. Dinardo, J.B. Rothman, M.P. Siegal, T.A. Friedmann, and L.J. Martinez-Miranda, “Electron emission induced modifications in amorphous tetrahedral diamondlike carbon”, Applied Physics Letters 72 (1998) 2244. [26] 田民波編著,“薄膜技術與薄膜材料”,五南圖書出版有限公司 (2007)。 [27] E. Liu, X. Shi, B.K. Tay, L.K. Cheah, H.S. Tan, J.R. Shi, and Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions”, Journal of Applied Physics 86 (1999) 78. [28] M. Chhowalla, A.C. Ferrari, J. Robertson, and G.A. J. Amaratunga, “Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy”, Applied Physics Letters 76 (2000) 1419. [29] J.Y. Shim and H.K. Baik, “Effect of non-diamond carbon etching on the field emission property of highly sp2 bonded nanocrystalline diamond films”, Diamond and Related Materials 10 (2001) 47. [30] 汪建民主編,“材料分析”,中國材料科學學會出版 6 (1998) 59。 [31] D.A. Skoog, F.J. Holler, and S.R. Crouch, “Principles of Instrumental Analysis Sixth Edition”, 2007. [32] J. Robertson, “Diamond-like amorphous carbon”, Materials Science and Engineering R 37 (2002) 129. [33] 蘇朝墩,“產品穩健設計-田口品質工程方法介紹和應用”,品質學會出版(2002)。 [34] P. Koidl, C. Wagner, B. Dischler, J. Wagner, and M. Ramsteiner, “Plasma Deposition, Properties and Structure of Amorphous Hydrogenated Carbon Films”, Materials Science Forum 52-53 (1990) 41. [35] L.Y. Chen and C.N. Hong, “Effects of SiOx-incorporation hydrocarbons on the tribological properties of DLC films”, Diamond and Related Materials 10 (2001) 1058. [36] L.Y. Chen and C.N. Hong, “Diamond-like carbon nanocomposite films”, Applied Physics Letters 82 (2003) 3526. [37] L. Zajickova, V. Bursikova, V. Perina, A. Mackova, and J. Janca, “Correlation between SiOx content and properties of DLC:SiOx films prepared by PECVD ”, Surface and Coatings Technology 174-175 (2003) 281. [38] S.A. Nikiforov, H.J. Ryoo, H.S. Oh, and G.H. Rim, “PI3D processing of DLC coatings for different applications”, Physica Status Solidi 5 (2008) 968. [39] C. Schwarz, J. Heeg, M. Rosenberg, M. Wienecke, “Investigation on wear and adhesion of graded Si/Sic/DLC coatings deposited by plasma-enhanced -CVD”, Diamond and Related Materials 17 (2008) 1685. [40] C. Corbella, I. B.ialuch, M. Kleinschmidt, and K. Bewilogua, “Modified DLC coatings prepared in a large-scale reactor by dual microwave/pulsed-DC plasma-activated chemical vapor deposition”, Thin Solid Films 517 (2008) 1125. [41] H.J. Ryoo, S.A. Nikiforov, G.H. Rim, S.V. Shenderey, H.S. Oh, and S.I. Chung, “DLC Coatings by PI3D:Low-Voltage versus High-Voltage Biasing”, Acta Physica Polonica A 115 (2009) 1146 [42] P.J. Burnett and D.S. Rickerby, “The relation ship between hardness and scratch adhesion”, Thin Solid Films 154 (1987) 403 . [43] J. Tauc,“Optical properties and electronic structure of amorphous germanium”, Physica Status Solidi 15 (1996) 627. [44] 林宏謙,“以電漿輔助化學氣相沉積法製備碳密封鍍層光纖:不同氫氣/甲烷比例對碳薄膜光學性質之影響”, 逢甲大學碩士論文 2004. [45] M.A. Capano, N.T. McDeutt, R.K. Singh, and F. Qian, “Characterization of amorphous carbon thin films”, Journal of Vacuum Science and Technology A 14 (1996) 431. [46] H.C. Tasi, D.B. Bogy, M.K. Kundmann, D.K. Veirs, M.R. Hilton and S.T. Mayer, “Structure and properties of sputtered carbon overcoats on rigid magnetic media disks”, Journal of Vacuum Science and Technology A 6 (1988) 2307. [47] M.A. Tamor and W.C. Vassel, “Raman fingerprinting of amorphous carbon films”, Journal of Applied Physics 76 (1994) 3823. [48] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S.R.P. Silva, “Raman spectroscopy on amorphous carbon films”, Journal of Applied Physics 80 (1996) 440.
摘要: 
摘要
本研究利用化學輔助氣相沈積法(PECVD)在玻璃模造產業所使用的超硬碳化鎢模具上製備類鑽碳膜以探討薄膜鍍著於模具上之機械與磨潤性質的最佳化研究,並將實驗分為兩大部份。
第一部份是應用「L9(34)田口實驗」(L代表田口直交表,9代表實驗次數,4代表控制因子數,3代表水準數)在四個控制因子(Factor),反應氣體源、反應溫度、基材偏壓、沈積時間,各選定三個水準(Level)進行實驗,其中反應氣體源有苯(Benzene, C6H6)、六甲基二矽氧烷(Hexamethyldisiloxane, HMDSO)、六甲基二矽氮烷(Hexamethyldisilazane, HMDSN)三種,利用田口實驗找出何者最適合沈積於超硬碳化鎢模具上當做中間層,並對表層的類鑽碳膜(Diamond-Like Carbon film, DLC film)進行機械與磨潤性質最佳化。由實驗結果顯示,苯(Benzene, C6H6)所沈積的薄膜之拉曼光譜最接近類鑽碳膜曲線,而且硬度值較高、摩擦係數最小,適合當類鑽碳膜的表層;而HMDSO所沈積的薄膜附著力為三者之中最佳,最適合當此種模具之中間層,並以硬度值望大、摩擦係數望小進行田口S/N比(signal to noise ratio)分析,獲得最佳化因子水準為:反應溫度250℃、基材偏壓-2000 V、沈積時間150 min,其中影響最大者為基材偏壓,由S/N比顯示朝著偏壓小的方向還可以再次進行優化得到DLC的最佳機械與磨潤性質。
故第二部份即以「HMDSO薄膜」當中間層,苯(Benzene,C6H6)沈積之類鑽碳膜當表層鍍著於超硬碳化鎢模具,並由上述L9(34)田口實驗的最佳化因子水準往偏壓小的方向對表層類鑽碳膜進行參數再優化,稱之為「類鑽碳膜偏壓優化實驗」。結果為基材偏壓於 -500 V時附著力最大為27±2 N,硬度值最高26.35±0.6 GPa,光學能隙值最高1.25 eV,表面粗糙度最小0.83 nm,摩擦係數(μ)為0.065,綜合判定具有最佳的機械與磨潤性質表現。
最後利用此最佳化參數分別在超硬碳化鎢與傳統碳化鎢模具上先鍍上中間層「HMDSO薄膜」,再鍍著DLC層,探討模具之機械性質對其實際成形壽命的影響,結果超硬碳化鎢模具之機械性質優於傳統碳化鎢,成形壽命最佳為330次優於傳統碳化鎢的252次。

Abstract
In this study, Diamond-like carbon films prepared by plasma enhanced chemical vapor deposition(PECVD) on superhard tungsten carbides and we divided it into two parts to optimize DLC films of mechanical and tribological properties.
First, we used L9 Taguchi Method then chose four control factors:precursor、reactive temperature、substrate bias、deposition time and three levels to carry out the experiment. And there were three kinds of precursors:benzene, hexamethyldisiloxane and hexamethyldisilazane in this part of experiment. According to the results, we have discovered that only the deposition films of benzene’s Raman spectra curve belongs to diamond-like carbon, and it has higher hardness values and lower friction coefficient, it’s suitable for diamond-like carbon layer. The other precursor that the deposition of hexamethyldisiloxane has the highest adhesion, it’s suitable for intermediate layer. In addition, we analyzed the signal to noise(S/N) ratio of hardness in larger the better (LTB) and friction coefficient in smaller the better (STB) then obtained the optimum parameter:reactive temperature at 250℃, substrate bias at -2000 V, deposition time at 150 minutes. Otherwise, the signal to noise ratio also indicated that we could try to toward the lower substrate bias and obtained better mechanical and tribological properties.
Second, we deposited DLC films by benzene, intermediate layer by HMDSO precursors on superhard tungsten carbides and according to the L9 Taguchi Method we could try to toward the lower substrate bias to optimize parameters. We named it as「DLC experiment of bias optimization」. The results showed the best mechanical and tribological performance was at -500 V bias and had the largest adhesion 27±2 N, the maximum hardness 26.35±0.6 GPa, the maximum optical band gap 1.25 eV, the minimum roughness 0.83 nm and friction coefficient 0.065.
Finally, we deposited intermediate layer by HMDSO precursors and DLC layer by benzene on superhard tungsten carbides and traditional tungsten carbides. To discusse the life time on superhard and traditional tungsten carbides. The results are superhard tungsten carbides’ mechanical properties is better than traditional tungsten carbides and its life time is 330 times higher than traditional tungsten carbides life time 252 times.
URI: http://hdl.handle.net/11455/10343
其他識別: U0005-2705201107132600
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.