Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10344
標題: The Titanium Oxynitride Gas Barrier Film Deposited on Polyethylene Terephthalate (PET) Substrate by Reactive Radio Frequency Magnetron Sputtering
應用反應性射頻磁控濺鍍法在PET基材上製備氮氧化鈦阻氣薄膜之研究
作者: Lin, Ming-Chih
林明志
關鍵字: Reactive Sputter;反應性濺鍍;TiNxOy Film;PET Substrate;Gas barrier layer;氮氧化鈦薄膜;PET基材;阻氣層
出版社: 材料科學與工程學系所
引用: 【1】 H. Chatham, Surf. Coat. Technol. 78 (1996) 1~9. 【2】 田宏隆,工業材料雜誌 206 (2004) 87. 【3】 Y. G. Tropsha and N. G. Harvey, J. Phy. Chem. B 101 (1997) 2259. 【4】 A. S. da Silva Sobrinho, M. Latrèche, G. Czeremuszkin, J. E. Klemberg-Sapieha, and M. R. Wertheimer, J. Vac. Sci. Technol. A 16(6) (1998) 3190. 【5】 A. G. Erlat, R. J. Spontak, R. P. Clarke, T. C. Robinson, P. D. Haaland, Y. Tropsha, N. G. Harvey and E. A. Vogler, J. Phys. Chem. B, 103 (1999) 6047. 【6】 K. Teshima, Y. Inoue, H. Sugimura and O. Takai, Vaccum 66 (2002) 353. 【7】 K. Teshima, Y. Inoue, H. Sugimura and O. Takai, Langmuir 19 (2003) 8331. 【8】 S. Iwamori, Y. Gotoh and K. Moorthi, Surf. Coat. Technol 166 (2003) 24. 【9】 B. M. Henrya, A. G. Erlat, A. McGuigan, C. R. M. Grovenor, G. A. D. Briggs, Y. Tsukahara, T. Miyamoto, N. Noguchi and T. Niijima, Thin Solid Film 382 (2001) 194. 【10】 H. Y. Low and Y. Xu, Appl. Surf. Sci. 250 (2005) 135. 【11】 A. S. da Silva Sobrinho, G. Czeremuszkin, M. Latrèche and M. R. Wertheimer, J. Vac. Sci. Technol. A 18 (2000) 149. 【12】 W. Huang, X. Wang, M. Sheng, L. Xu, F. Stubhan, L. Luo, T. Feng, X. Wang, F. Zhang and S. Zou, Materials and Engineering B98 (2003) 248. 【13】 A. G. Erlat, B. M. Henry, J. J. Ingram, D. B. Mountain, A. McGuigan, R. P. Howson, C. R. M. Grovenor, G. A. D. Briggs and Y. Tsukahara, Thin Solid Film 338 (2001) 78. 【14】 A. G. Erlat, B. M. Henry, C. R. M. Grovenor, G. A. D. Briggs, R. J. Chater and Y. Tsukahara, J. Phys. Chem. B, 108 (2004) 883. 【15】 S. Iwamori, Y. Grotoh and K. Moorthi, Vacuum 68 (2003) 113. 【16】 M. C. Lin L.-S. Chang and H. C. Lin, Appl. Surf. Sci. 254 (2008) 3059. 【17】 D. J. Brennan, J. E. White and C. N. Brown, Macromolecules 31 (1998) 8281. 【18】 J. D. Affinito, M. E. Gross, C. A. Coronado, G. L. Graff, E. N. Greenweell and P. M. Martin, Thin Solid Film 290-291 (1996) 63. 【19】 D. S. Wuu, W. C. Lo, L. S. Change and R. H. Horng, Thin Solid Film 468 (2004) 105. 【20】 J. G. Lee, Y. G. Seol and N.-E Lee, Thin Solid Film 515 (2006) 805. 【21】 F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Psichow and J. de Rijk, Thin Solid Film 447-448 (2004) 449. 【22】 Mehdi H. Kazemeini, Alexander A. Berezin and Nobuhiko Fukuhara, Thin Solid Film 372 (2000) 70. 【23】 N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjines, J. Takadoum and F. Levy, Appl. Surf. Sci. 185 (2001) 123. 【24】 F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau and J. P. Riviere, Surf. Coat. Technol. 174-175 (2003) 197. 【25】 A. Bittar, D. Cochrane, S. Caughley and I. Vickeridge, J. Vac. Sci. Technol. A15 (2) (1997) 223. 【26】 M. Lazaror, P. Raths, H. Metager and W. Spirkl, J. Appl. Phys. 77 (5) (1995) 2133. 【27】 洪金賢,工業材料雜誌 243 (2007) 159. 【28】 C. Nunes, V. Teixeira, M. L. Prates, N. P. Barradas and A. D. Sequeira, Thin Soild Films 442 (2003) 173. 【29】 I. Tsyganov, M. F. Maitz, E. Wieser, E.Richter and H. Reuther, Surf. Coat. Technol. 200 (2005) 1041. 【30】 C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, P.Schmolz, W. S. M. Werner and H. Stori, Vacuum 46 (1995) 1281. 【31】 S. H. Mohamed, O. Kappertz, T. Niemeier, R. Drese, M. M. Wakkad and M. Wuttig, Thin Soild Film 468 (2004) 48. 【32】 P. Carvalho, F. Vaz, L. Rebbouta, L. Cunha, C. J. Javares and C. Moura, J. Appl. Phys. 98 (2005) 023715/1. 【33】 J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn and S. A. Barnett, J. Appl. Phys. 72(5) (1992) 1805. 【34】 M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo and J. G. Han, Surf. Coat. Technol. 171 (2003) 71. 【35】 S. Zheng, Z. Li and L. Gao, Mater. Chem. Phys. 85 (2004) 195. 【36】 J. M. Chappe, N. Martin, J. Lintymer, F. Sthal, G. Terwagne and J. Takadoum, Appl. Surf. Sci. 253 (2007) 5321. 【37】 C. H. Shin, G. Bugli and G. D. Mariadssou, J. Solid State Chem. 95 (1991) 145. 【38】 Y. Makino, M. Nose, T. Tanaka, M. Misawa, A. Tanimoto and T. Nakai, Surf. Coat. Technol. 98 (1998) 934. 【39】 J. Guillot, J.-M. Chappé, O. Heintz, N. Martin, L. Imhoff and J. Takadoum, Acta Materialia 54 (2006) 3067. 【40】 G. García-Ayuso, L. Vázquez and J. M. Martínez-Duart, Surf. Coat. Technol. 80 (1996) 203. 【41】 B. B. Straumal, N. F. Vershinin, A. Cantarero-Saez, M. Friesel and P. Zieba, Thin Solid Film 383 (2001) 224. 【42】 M. Faraday, Phil. Trans. 145 (1875) 147. 【43】 M. Auwarter and Balzers, Austrian Pat. Nr. 192650 (1952). 【44】 W. R. Grove, The Philosophical Magazine, 16 (1840) 478. 【45】 J. L. Vossen and W. Kern, “Thin Film Processes”, Academic Press (1978) 14. 【46】 D. S. Rickerby and A. Mattews, “Advanced Surface Coatings”, Chapman and Hall (1992) 94. 【47】 G. Kaltenpoth, W. Siebert, F. Stubhan, X. Wang and L. Luo, Surf. Coat. Technol. 161 (2002) 96. 【48】 李銀安,“受控熱核融合”,牛頓出版社 (1996) 54. 【49】 B. F. I, “Plasmas:Larboratory and cosmic,” Van Nostrand, (1966). 【50】 H. V. Boenig, “Plasma Science and Technology”, Cornell University press, (1982). 【51】 田民波,“薄膜技術與薄膜材料”,五南圖書 (2007) 145. 【52】 B. Chapman, “Grow Discharge Processes”, John Wiley and sons, (1980). 【53】 卡貝爾, “電漿物理學”, 徐氏基金會 (1969). 【54】 F. F. Chen, “Introduction to Plasma Physics and Controlled Fusion”, Plenum Press (1983). 【55】 M. Ohring, “The Materials Science of Thin Films”, Academic Press (1992) 107. 【56】 Wolf R. Vieth, “Diffusion In and Through Ploymers”, University Press Oxford (1991) 73. 【57】 J. Comyn, in: Comyn(Ed.), “Polymer Permeability”, Elsevier Applied Science, London and New York (1986). 【58】 R. S. Kumar, M. Auch, E. Ou, G. Eward, C. S. Jin, Thin Solid Film 417 (2002) 120. 【59】 A. P. Roberts, B. M. Henry, A. P. Sutton, C. R. M. Grovenor, G. A. D. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara and M. Yanaka, J. Membr. Sci. 208 (2002) 75. 【60】 Auciello and D. L. Flamm, “Plasma Diagnostics, Volume 1 Discharge parameters and Chemistry”, Academic Press, Inc., New York (1989) 113. 【61】 R. A. Gottscho and T. A. Miller, Pure & Appl. Chem. 56 (1984) 189. 【62】 H. F. Dylla and W. R. Blanchard, J. Vac. Sci. Tenchnol., Al (1983) 1297. 【63】 廖俊偉,蕭祝螽,陳蔚宗,工業材料雜誌 213 (2004) 171. 【64】 I. P. Herman, “Optical Diagnostics for Thin Film Processing”, Academic Press, San Diego (1996). 【65】 A. N. Saidel, V. K. Prokofiev and S. M. Raiski, “Tables of Spectrum Lines”, Veb Verlag Technik Berlin (1955). 【66】 J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics (1995) 73. 【67】 PERMATRAN-W Model 3/61 Operator’s Manual, MOCON. 【68】 OX-TRAN 2/61 Modular System Operator’s Manual, MOCON. 【69】 J. Guillot, A. Jouaiti, L. Imhoff, B. Domenichini, O. Heintz, S. Zerkout, A. Mosser and S. Bourgeois, Surf. Interface Anal. 34 (2002) 577. 【70】 S. Dreer, R. Krismer, P. Willhartitz, G. Friedbacher, Thin Solid Film 354 (1999) 43. 【71】 M. Neuhäuser, S. Bärwulf, H. Hilgers, E. Lugscheider and M. Riester, Surf. Coating Technol. 116-119 (1999) 981. 【72】 Brian Chapman’s, “Glow Discharge Processes”, John Wiley & Sons, Inc., New York (1980). 【73】 Rajiv Ranjan, J. P. Allain, M. R. Hendricks, and D. N. Ruzic, J. Vac. Sci. Technol. A 19 (2001) 1004. 【74】 J. Guillot, T.-M. Chappé, O. Heintz, N. Martin, L. Imhoff, J. Takadoum, Acta Materialia 54 (2006) 3067. 【75】 F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A. R. Ramos, A. Cavaleiro, Ph. Goudeau, J. P. Rivie`er, Thin Solid Films 469-470 (2004) 11. 【76】 L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J. P. Rivie`er, Surf. Coat. Technol. 200 (2006) 2917. 【77】 林俊良,”利用射頻磁控濺鍍法於可撓式基材鍍著具鈦介層之氮氧化鈦薄膜” 國立清華大學 (2008) 碩士論文。 【78】 U. C. Oh and J. H. Je, J. Appl. Phys. 74 (1993) 1692. 【79】 J. H. Je, D. Y. Noh, H. K. Kim, and K. S. Liang, J. Appl. Phys. 81 (1997) 6126. 【80】 J. P. Zhao, X. Wang, Z. Y. Chen, S. Q. Yang, X. H. Liu, J. Phys. D: Appl. Phys. 30 (1997) 5.
摘要: 
本研究應用反應性射頻磁控濺鍍法,在聚對苯二甲酸乙二醇酯(PET)基材上成功鍍出優質的TiNxOy薄膜。藉由改變實驗製程參數,包括射頻功率密度、基材偏壓、氮氣流量比例等,並調控濺鍍時間與薄膜厚度,製備各種TiNxOy薄膜。深入分析TiNxOy薄膜之相關特性,包括薄膜表面形貌、結構組成、阻水/阻氣率與水氣/氧氣滲透活化能等,並探討各種製程參數與TiNxOy薄膜特性之關係,藉以尋求最佳製程參數並獲得優異品質的TiNxOy薄膜。
研究結果顯示,濺鍍TiNxOy薄膜之電漿中,主要包含Ti、Ar、Ar+、N2與N2+等物種,且射頻功率密度與氮氣流量比例等製程參數之改變,會顯著影響這些物種的光激發強度。TiNxOy薄膜沉積速率會隨著射頻功率密度的提高而快速增加,但隨著氮氣流量比例的增加而下降,施加適當基材偏壓可有效提升薄膜沉積速率。當TiNxOy薄膜厚度較薄時,薄膜無法完全覆蓋整個基材表面,而呈現許多微小孔洞。隨著薄膜厚度增加,TiNxOy薄膜表面逐漸轉為團聚島狀形貌,當薄膜厚度增加到相當厚度時,TiNxOy薄膜表面呈現三角形貌。沉積初期,TiNxOy薄膜主要呈現非晶質結構,但隨著薄膜厚度增加,TiNxOy薄膜顯現奈米晶結構,且其結晶優選方位逐漸由(200)轉成(111)。雖然改變射頻功率密度、氮氣流量比例等製程條件會影響TiNxOy薄膜中之Ti、N、O含量與TiN、TiNxOy、TiO2鍵結量,但其薄膜組成與鍵結量變化仍然以薄膜厚度為主要影響因素。應用較低射頻功率密度與較高氮氣流量比例製備之TiNxOy薄膜,其晶界與內部缺陷較少,使得水氣與氧氣滲透之整體活化能提高而呈現較優良的阻氣能力。TiNxOy薄膜之水氣/氧氣滲透率隨著薄膜厚度之增加而降低,但當薄膜厚度大於臨界值時,其水氣/氧氣滲透率之降低幅度趨緩。TiNxOy薄膜之臨界厚度約為55 nm,此時之水氣與氧氣滲透率分別為0.41 g/m2-day-atm及0.65 c.c./m2-day-atm,約為未鍍膜前之0.07與0.02倍。

TiNxOy films have been successfully deposited on PET substrates by means of the reactive RF magnetron sputtering technique. The influences of RF power density, substrate bias, nitrogen flow rate ratio and deposition time on the film's properties have been systematically investigated, including the film's surface morphology, microstructure, composition, anti-permeation ability and apparent activation energy of permeation for water vapor and oxygen gas. Meanwhile, the present study aims at finding the optimal parameters to prepare the excellent TiNxOy films on PET substrates.
Experimental results show that the main species within the plasma during the deposition of TiNxOy films are Ti, Ar, Ar+, N2 and N2+. The RF power density and nitrogen flow rate ratio exhibit obvious effects on the optical emission intensities of these species. The deposition rates of TiNxOy films increases rapidly with increasing RF power density, but decreases with increasing nitrogen flow rate ratio. Besides, the deposition rate of TiNxOy films can also be effectively increased by applying a suitable substrate bias, that is -40 V in this study. For thinner deposited TiNxOy films, lots of small pinholes are observed on the film's surface because they are too thin to fully cover the whole surface of PET substrate. With increasing thickness of TiNxOy films, their surface exhibits the island-type morphology. Many triangle particles can be clearly observed on the surface of TiNxOy films with enough thickness. During the early deposition stage, TiNxOy films exhibit an amorphous structure. With increasing thickness of TiNxOy films, nano-crystals appear and grow gradually within the films. The preferential orientations of the nano-crystals change gradually form (200) to (111) with increasing film's thickness. Although the RF power density and nitrogen flow rate ratio may have some effects, the film's thickness is the most important factor to affect the compositions of Ti, N, O and bonding structures of TiN, TiNxOy, TiO2 within the TiNxOy films. The TiNxOy films, being deposited at lower RF power densities and higher nitrogen flow rate ratios, will have a less quantity of grain boundaries and internal defects. Hence, these TiNxOy films have higher apparent activation energies for water vapor /oxygen permeation and exhibit better ability of gas anti-permeation. Meanwhile, the water vapor/oxygen transmission rates, namely the WVTR and OTR, are found to decrease significantly with increasing thickness of TiNxOy films. After reaching a critical thickness, the WVTR and OTR of TiNxOy films do not vary strongly with further increasing of film's thickness. In the present study, the critical thickness of TiNxOy films deposited on PET substrate is about 55 nm. The WVTR and OTR of TiNxOy films with this critical thickness are 0.41 g/m2-day-atm and 0.65 cc/m2-day-atm, respectively. These values are about 0.07 and 0.02 times of those for the uncoated PET substrate.
URI: http://hdl.handle.net/11455/10344
其他識別: U0005-2807200611432200
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.