Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10384
標題: 以電漿電解氧化法於TiN薄膜底材上製備鈦酸鋇膜及其特性研究
Growth and characterization of barium titanate films on TiN underlayers synthesized by plasma electrolytic oxidation
作者: 曾珠玲
Zeng, Jhu- Ling
關鍵字: plasma electrolytic oxidation;電漿電解氧化法;TiN/Si;barium titanate;TiN/Si;鈦酸鋇
出版社: 材料科學與工程學系所
引用: 1. W.M. Kriven, O.O. Popoola, M.H. Jilavi, and S.D. Brown, “Preparation and microstructure characterization of anodic spark deposited barium titanate conversion layers,” J. Mater. Res., 14 (1999) 1437. 2. M. A. McCormick and E. B. Slamovich, “Microstructure development and dielectric properties of hydrothermal BaTiO3 thin films,” J. Eur. Ceram. Soc., 23 (2003) 2143. 3. S. Venigalla, P. Bendale, and J. H. Adair, “Low Temperature Electrochemical Synthesis and Dielectric Characterization of Barium Titanate Films Using Nonalkali Electrolytes,” J. Electrochem. Soc., 142 (1995) 2101. 4. K. Suzuki, and K. Kijima, “Phase transformation of BaTiO3 nanoparticles synthesized by RF-plasma CVD,” J. Alloys Compd., 419 (2006) 234. 5. C. Fu, L. Zhou, H. Chen, and Z. Liu, “Synthesis of self-assembly BaTiO3 nanowire by sol-gel and microwave method,” Appl. Surf. Sci., 255 (2009) 9444. 6. B. Lee, and J. Zhang, “Preparation, structure evolution and dielectric properties of BaTiO3 thin films and powder by an aqueous sol-gel process,” Thin Solid Films, 388 (2001) 107. 7. P. Yu, X. Wang, and B. Cui, “Preparation and characterization of BaTiO3 powders and ceramics by the sol-gel process using organic monoacid as surfactant,” Scripta Mater. 57 (2007) 623. 8. V. P. Dravid, H. Zhang, L. A. Wills, and B. W. Wessels, “On the microstructure, and dielectric function of BaTiO3 MOCVD thin films,” J. Mater. Res., 9 (1994) 426. 9. C.-T. Wu and F.-H. Lu, “Electrochemical deposition of barium titanate films using a wide electrolytic voltage range,” Thin Solid Films., 398(2001) 621. 10. P. Bendale, S. Venigalla, J. R. Ambrose, E. D. V. Jr., and J. H. Adair, “Preparation of Barium Titanate Films at 55℃ by an Electrochemical Method,” J. Am. Ceram. Soc., 76 (1993) 2619. 11. P.-H. Chan and F.-H. Lu, “Low Temperature Hydrothermal Synthesis and the Growth Kinetics of BaTiO3 Films on TiN/Si, Ti/Si, and Bulk -Ti Substrates,” J. Electrochem. Soc. 157 (2010) G130. 12. W. Sun, W. Liu, and J. Li, “Effects of chloride ions on hydrothermal synthesis of tetragonal BaTiO3 by microwave heating and conventional heating,” Powder Technol., 166 (2006) 55. 13. M. S. Zhang, J. Yu, J. Chu, Q. Chen, and W. Chen, “Microstructures and photoluminescence of barium titanate nanocrystals synthesizes by the hydrothermal process,” J. Mater. Process. Technol., 137 (2003) 78. 14. Z. Wu, and M. Yoshimura, “Investigations on procedures of the fabrication of barium titanate ceramic films under hydrothermal-electrochemical conditions,” Solid State Ionics, 122 (1999) 161. 15. I. S. Escobar, C. I. Silva, T. Vargas, and V. M. Fuenzalida, “Nucleation and Inhibition Control during the Hydrothermal- electrochemical Growth of Barium Titanate Films,” J. Am. Ceram. Soc., 83 (2000) 2673. 16. M. Yoshimura, S.-E Yoo, M. Hayashi, and N. Ishizawa, “Preparation of BaTiO3 Thin Film by Hydrothermal- electrochemical Method,” Jpn. J. Appl. Phys., 28 (1989) L2007. 17. S.V. Gnedenkov, P.S. Gordienko, O.A. Khrisanfova, T.M. Scorobogatova, and S.L. Sinebrukhov, “Formation of BaTiO3 coatings on titanium by microarc oxidation method,” J. Mater. Sci. 37 (2002) 2263. 18. F.-H. Lu, C.-T. Wu and C.-Y. Hung, “Barium titanate films synthesized by an anodic oxidation-based electrochemical method,” Surf. Coat. Technol. 153 (2002) 276. 19. C.-T. Wu and F.-H. Lu, “Corrosion resistance of BaTiO3 films prepared by plasma electrolytic oxidation,” Surf. Coat. Technol. 166 (2002) 31. 20. C.-T. Wu and F.-H. Lu, “Synthesis of barium titanate films by plasma electrolytic oxidation at room electrolyte temperature,” Surf. Coat. Technol. 199 (2005) 225. 21. P. A. Dearnaley and E. M. Trent, “Wear mechanisms of coated carbide tools,” Met. Technol., 9 (1982) 60. 22. Hugh O. Pierson, Handbook of refractory carbides and nitrides : properties, characteristics, processing and applications. Park Ridge, Noyes Publications, New York, (1996) 163-247. 23. 汪建民,陶瓷技術手冊(下),中華民國粉末冶金協會,第二十三章:氮化物(黃肇瑞),第777~804頁,民國八十三年。 24. 鄧煥平,“以低溫水熱-化學電池法於氮化鋯膜矽基材上製備鋯酸鋇膜之研 究”,國立中興大學材料科學與工程學系碩士論文,(2007)。 25. G. H. Heartling, “Ferroelectric thin films for electronic applications,” J. Vac. Sci. Technol. A, 9 (1991) 414. 26. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, William R. CooK, Jr. and Hans Jaffe Gould Inc., Cleveland, (1971). 27. J. A. Curran, “Thermal and Mechanical Properties of Plasma Electrolytic Oxide Coatings,” Peterhouse , Department of Materials Science and Metajjurgy, University of Cambridge, (2005). 28. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, “Plasma electrolysis for surface engineering,” Surf. Coat. Technol., 122 (1999) 73. 29. P. Gupta, G. Tenhundfeld, E.O. Daigle, and D. Ryabkov, “Electrolytic plasma technology: Science and engineering-An overview,” Surf. Coat. Technol., 201 (2007) 8746. 30. W.-F. Li, B. Han, J. Du, J.-H. Peng, and Y.-H. Gao, “Structural characteristics of BaTiO3 films prepared by microarc oxidation,” Trans. Nonferrous. Met. Soc. China., 16 (2006) 1041. 31. 李文芳,韓冰和彭繼華,“利用微弧氧化法製備四方相BaTiO3薄膜的結構特徵及鐵電性能,” 動能材料,2007年第10期38卷。 32. 李文芳,韓冰和彭繼華,“微弧氧化法製備BaTiO3薄膜的微觀結構特徵分析,” 材料開發與應用,2006年第2期22卷。 33. J.-H. Peng, B. Han, W.-F. Li, J. Du, P. Guo, and D. Han, “Study on the microstructure evolution of BaTiO3 on titanium substrate during MAO,” Mater. Lett. 62 (2008) 1801. 34. J.-H. Peng, B. Han, W.-F. Li, J. Du, and F. L. Huang, “Synthesis of tetragonal BaTiO3 films on Ti substrate by micro-arc oxidation,” Trans. Nonferrous. Met. Soc. China., 18 (2008) 1117. 35. H. J. Song, and Y. J. Park, “Fabrication of BaTiO3 films on titanium by microarc oxidation method and improvement of bioactivity by electric poling treating,” Mater. Lett., 61 (2007) 3473. 36. S. Meyer, R. Gorges, and G. Kreisel, “Preparation and characterization of titanium dioxide films for catalytic applications generated by anodic spark deposition,” Thin Solid film, 450 (2004) 276. 37. 余錦智,“以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究”,國立中興大學材料科學與工程學系碩士論文,(2005)。 38. Y-C. Chieh, C-C Yu, and F-H Lu, “Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method,” Appl. Phys. Lett., 90 (2007) 032904. 39. 蔡迪佑,“以水熱-化學電池法於氮化鈦膜上製備鈦酸鋇膜及其成長動力學分析”,國立中興大學材料科學與工程學系碩士論文,(2010)。 40. E. U. Okoroafor, ROC patent, 093121908 Coating, 2005:U.K. 41. 鮮祺振,腐蝕控制,徐氏基金會出版,第三章腐蝕電化學理論,第41-43頁,民國87年。 42. P. Marcus, Corrosion mechanisms in theory and practice, 2nd ed, Marcel Dekker, Inc. New York, (2002) 1. 43. H. H. Uhlig, Corrosion and Corrosion Control, Wiley, New York, USA, (1971) 1. 44. A.J. Bard, and L. R. Faulkner, Electrochemical methods fundamentals and applications, 2nd ed. John Weily & Sons, U. S. A, (2001) 92. 45. M. G. Fontana and N. D. Greene, Corrosion Engineering, 2nd ed. McGraw-Hill, New York, (1978) 28. 46. E. Hummel, Electronic Properties of Materials., 3rd ed. Springer-Verlag, New York, (2001) 186. 47. 吳朗,電子陶瓷,全欣科技圖書,第二章介電理論,第74-85頁,民國83年。 48. R. H. U. Khan, A. L. Yerokhin, T. Pilkington, A. Leyland, and A. Matthews, “Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current,” Surf. Coat. Technol., 200 (2005) 1580. 49. H.-I. Hsiang, F.-S Yen, and C. –Y. Huang, “Effects of porosity on dielectric properties of BaTiO3 ceramics,” Jpn. J. Appl. Phys. 34 (1995) 1922.
摘要: 
本研究主要是以電漿電解氧化法於TiN/Si上製備鈦酸鋇膜,並探討不同外加電壓下對於鈦酸鋇膜的成長以及成膜後之抗腐蝕與介電特性之影響,同時亦利用於Ti/Si上製備鈦酸鋇膜做為對照組,探討不同底材對於鈦酸鋇膜成長之影響,目前尚未有文獻以電漿電解氧化法於導電氮化物上製備氧化膜。在外加不同電壓下,發現以TiN/Si可製備出立方相之鈦酸鋇膜,然而,於反應過程中亦同時產生碳酸鋇污染,此污染經由浸泡0.1 M稀磷酸溶液後已有效清除。
施加電壓60 V以下之試片,其表面呈現顆粒球狀結構,且反應時試片表面無火花產生,此屬電化學反應機制;電壓66 V以上,表面顯示出多孔結構,反應時試片表面有火花產生,此為電漿電解氧化法機制之特徵;電壓為60-66 V之間,為電化學轉換成電漿電解氧化法之過渡區。將反應後的試片進行抗腐蝕分析,當電壓低於60 V,其腐蝕電位並無太大變化;電壓70 V以上,其腐蝕電位由-0.085 V往正偏移至-0.064 V,顯示電漿電解氧化法所製備的鈦酸鋇,其抗腐蝕能力較佳。
本研究進一步利用Ti/Si做為對照組,發現以Ti/Si和TiN/Si皆可製備出立方相鈦酸鋇膜。經X光繞射結果計算鈦酸鋇之相對量,發現利用Ti/Si反應3分鐘其相對量為5.6%,而TiN/Si反應1分鐘後之相對量則為80.2%,顯示於TiN/Si上製備出之鈦酸鋇相對量較Ti/Si高約15倍。由膜厚圖所計算之膜厚平均成長速率,發現Ti/Si製備鈦酸鋇其平均成長速率為每秒3 nm,而TiN/Si則為每秒80 nm,於TiN/Si製備鈦酸鋇平均成長速率約為Ti/Si的25倍。由腐蝕分析結果顯示,於Ti/Si和TiN/Si上製備鈦酸鋇之腐蝕電位分別為-0.108 V和-0.085 V。
綜合結果發現,電漿電解氧化法於TiN/Si上製備BaTiO3膜,比起其他相關製程,如水熱法、水熱化學電池法和電化學法形成之BaTiO3膜成膜速度快了許多,且生成之氧化膜結晶性更佳。以電漿電解氧化法於TiN/Si上製備鈦酸鋇膜比利用Ti/Si快速,且抗腐蝕能力也較好。

The objective of this study is to synthesize barium titanate (BaTiO3) films on TiN/Si by plasma electrolytic oxidation. Corrosion resistance and dielectric behavior of BaTiO3 films with applied voltage were discussed. Further more, synthesis of BaTiO3 films on Ti/Si substrates were also conducted for comparison. Effect of the substrates on the growth of BaTiO3 were discussed. In this study, cubic BaTiO3 films were successfully prepared at different voltages, while little barium carbonate (BaCO3) contamination was observed. However, BaCO3 could be removed effectively by using 0.1 M phosphoric acid solution.
BaTiO3 films possessed uniformly distributed spherical-particulate morphology surface below 60 V, which was due to electrochemical. As the voltage increased up to 66 V, spark occurred on the surface and porous films, which are main characteristics of plasma electrolytic oxidation, were obtained. When voltage was in the range of 60 V-66 V, the transion region from the anodic oxidation to plasma electrolytic oxidation was observed. As for the corrosion studies, the corrosion potential remained unchanged below 60 V. As the voltage increased to 70V, the corrosion potential was positive offset from-0.085 V to-0.064 V, which shows BaTiO3 films prepared by plasma electrolytic oxidation possessed a better corrosion resistance.
Cubic BaTiO3 films were successfully prepared on both Ti/Si and TiN/Si substrates by plasma electrolytic oxidation. The relative intensity of BaTiO3, caculated from X-ray diffraction results, was 5.6%on Ti/Si as synthesized 3 minutes and 80.2%on TiN/Si for 1 minute. Evidently, the BaTiO3 films grew faster on TiN/Si than Ti/Si.The corrosion potentials of BaTiO3 films prepared on Ti/Si and TiN/Si were-0.108 V and-0.085 V.
Based on above results, prepare BaTiO3 films by plasma electrolytic oxidation. Compared to hydrothermal, hydrothermal- galvanic couple, and electrochemical methods, this technique can produce BaTiO3 films with much higher growth rate and crystallinity. Compared to Ti/Si, the growth rate and corrosion resistance of BaTiO3 films prepared on TiN/Si are faster than those synthesized on Ti/Si.
URI: http://hdl.handle.net/11455/10384
其他識別: U0005-2805201115075000
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.