Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10399
DC FieldValueLanguage
dc.contributor林得裕zh_TW
dc.contributorDer-Yuh Linen_US
dc.contributor陳偉立zh_TW
dc.contributor陳思翰zh_TW
dc.contributor余昌峰zh_TW
dc.contributorWei-Li Chenen_US
dc.contributorSy-Hann Chenen_US
dc.contributorChang-Feng Yuen_US
dc.contributor.advisor林佳鋒zh_TW
dc.contributor.advisorChia-Feng Linen_US
dc.contributor.author林明秀zh_TW
dc.contributor.authorLin, Ming-Shiouen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:45:00Z-
dc.date.available2014-06-06T06:45:00Z-
dc.identifierU0005-2807201116454500zh_TW
dc.identifier.citation1.H. J. Round, “A note on carborundum,” Electrical world, 49(6), pp.309, (1907). 2.E. F. Schubert, “Light-Emitting Diodes” (Cambridge University Press), ( 2003) 3.T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., 84 (6) pp.855 (2004) 4.C. H. Chiu, C. E. Lee, C. L. Chao, B. S. Cheng, H. W. Huang, H. C. Kuo, T. C. Lu, S. C. Wang, W. L. Kuo, C. S. Hsiao, S. Y. Chen , “Light output intensity by integrating ZnO nanorod arrays on GaN-based LLO vertical LEDs”, Electrochem. Solid. ST. , 11(4), pp.H84, (2008) 5.L. H. Peng, C. H. Liao, Y. C. Hsu, “Photoenhanced wet oxidation of gallium nitride”, Appl. Phys. Lett., 76(4), pp.511, (2000) 6.J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, „InGaN/GaN quantum well heterostructure light emitting diodes employing photonic crystal structures“ , Appl. Phys. Lett., 84(19) pp.3885 (2004) 7.T. S. Ko, T. C. Wang, R. C. Gao, Y. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, “InGaN /GaN nanostripe grown on pattern sapphire by metal organic chemical vapor deposition“, Appl. Phys. Lett., 90(1), pp.013110-1, (2007) 8.T. Takagi, H. Imamoto, F. Sato, K. Imanaka and M. Shimura, “High power Broad Mesa Structure AlGaAs/GaAs single quantum well edge emitting LED”, IEEE Photonics Technol. Lett. 1(1), pp.14, (1989) 9. D.C. Look , “Recent advances in ZnO materials and devices”, Mater. Sci. Eng. B, 80(1-3) pp.383, (2001) 10.&Uuml;. &Ouml;zg&uuml;r,_Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, H. Morko&ccedil;, “A comprehensive review of ZnO materials and devices”, J. of Appl. Phys. 98(4), pp. 04130-1, (2005) 11.K. Yu, Z. Jin, X. Liu, J. Zhao, J. Feng,” Shape alterations of ZnO nanocrystal arrays fabricated from NH3•H2O solutions”, Appl. Surf. Sci. 253(8), pp.4072, (2007) 12.J. Lu, Q. Liang, Y. Zhang1, Z. Ye1, S. Fujita,” Improved p-type conductivity and acceptor states in N-doped ZnO thin films”, J. Phys. D: Appl. Phys., 40(10), pp. 3177 ,(2007) 13.Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, “Room temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Appl. Phys. Lett., 72(25), pp.3270, (1998) 14.Haiyong Gao, Fawang Yan, Jinmin Li, Yiping Zeng, JunxiWang, “Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method”, J. Phys. D: Appl. Phys., 40(12), pp.3654, (2007) 15.N. Izyumskaya, V. Avrutin, &Uuml;. &Ouml;zg&uuml;r, Y. I. Alivov, and H. Morko&ccedil;, “Preparation and properties of ZnO and devices”, Phys. Stat. Sol. (b), 244(5),pp.1439, (2007) 16.J. M. Jang, J. Y. Kim, and W. G. Jung, “Synthesis of ZnO nanorods on GaN epitaxial layer and Si (100) substrate using a simple hydrothermal process”, Thin Solid Films 516(23), pp.8254, (2008) 17.Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, “One dimensional nanostructures : synthesis characterization and applications”, Adv. Mater. ,15(5), pp.353, (2003) 18.J. Hu, T. W. Odom, C. M. Lieber, “Chemistry and physics in one dimension synthesis and properties of nanowires and nanotubes”, Acc. Chem. Res., 32(5), pp.435 (1999) 19.Z. L. Wang, “Self-assembled nanoarchitectures of polar nanobelts nanowires”, J. Mater. Chem. 15 pp.1021, (2005) 20.W. C. Peng, Y. C. S. Wu, “Enhanced light output in double roughened GaN light emitting diodes via various texturing treatments of undoped GaN layer”, Jpn. J. Appl. Phys. 45(10A) ,pp. 7709 ,(2006) 21.S. Shafiei, A. Nourbakhsh, B. Ganjipour1, M. Zahedifar, G. Vakili-Nezhaad, “Diameter optimization of VLS-synthesized ZnO nanowires using statistical design of experiment”, Nanotechnology, 18(35) , pp. 355708-1 ,(2007) 22.Sang-Woo Kim Shizuo Fujita, “ZnO nanowires with high aspect ratios grown by metal organic chemical vapor deposition using gold nanoparticles”, Appl. Phys. Lett., 86(15), pp.153119, (2005) 23.J.S. Huang, and C.F. Lin, “Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution based processing”, J. Appl. Phys., 103(1), pp.014304-1, (2008). 24.L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater., 15(5), pp.464, (2003) 25.P. Hari, M. Baumer, W.D. Tennyson, L.A. Bumm, “ZnO nanorod growth by chemical bath method”, J. Non-Cryst. Solids, 354(19-25), pp.2843 (2008) 26.M. O. L&oacute;pez, A. A. Garc&iacute;a, M. L. Albor-Aguilera and V. M. S&aacute;nchez-Resendiz, “Improved efficiency of the chemical bath deposition method during growth of ZnO thin films”, Mater. Res. Bull., 38(7), pp.1241, (2003) 27.C. H. Chao, J. S. Huang, and C. F. Lin, “Low-temperature growth of surface-architecture-controlled ZnO nanorods on Si substrates”, J. Phys. Chem. C, 113(2), pp.512, (2009) 28.Gyu-Chul Yi, ChunruiWang and Won Il Park, “ZnO nanorods: synthesis, characterization and applications”, Semicond. Sci. Technol. 20(4), pp. S22, (2005) 29.Kuveshni Govender, David S. Boyle, Peter B. Kenway and Paul O'Brien, ” Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, J. Mater. Chem., 14(16), pp. 2575, (2004) 30.Ke Yu, Zhengguo Jin , Xiaoxin Liu, Juan Zhao, Junyi Feng, “Shape alterations of ZnO nanocrystal arrays fabricated from NH3•H2O solutions”, Applied Surface Science. 253(8), pp.4072 (2007) 31.Sun-Hong Park, Seon-HyoKim and Sang-Wook Han, “Growth of homo-epitaxial ZnO film on ZnO nanorods and light emitting diode applications”, Nanotechnology, 18(5), pp.055608 ,(2007) 32.D. Wang, H. W. Seo, C.-C. Tin, M. J. Bozack, J. R. Williams, and M. Park, Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails “, J. Appl. Phys., 99(9), pp.093112, (2006) 33.M.H. Huang, S. Ma, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science. 292(5523), pp. 1897 (2001) 34.Tae Su OH, Seung Hwan Kim, Tae Ki Kim, Yong Seok Lee, Hyun Jeong, Gye Mo Yang, and Eun-Kyung Suh, “GaN-based light-emitting diodes on micro-lens patterned sapphire substrate”, Jpn. J. Appl. Phys., 47(7), pp.5333, (2008) 35.C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, Peichen Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template”, Appl. Phys. Lett. 93(8), pp.081108, (2008) 36.Yun-Wei Cheng , Kun-Mao Pan , Cheng-YinWang, Hung-Hsien Chen, Min-Yung Ke, Cheng-Pin Chen, Min-Yann Hsieh, Han-Ming Wu, Lung-Han Peng and JianJang Huang, “Enhanced light collection of GaN light emitting devices by redirecting the lateral emission using nanorod reflectors”, Nanotechnology, 20(3), pp.035202,(2009) 37.Tae Sun Kim, Sang-Mook Kim, Yun Hee Jang, and Gun Young Jung, “Increase of light extraction from GaN-based light emitting diodes incorporating patterned structure by colloidal lithography”, Appl. Phys. Lett. 91(17), pp.171114, (2007) 38.T. Takeuchi, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber, and J. Yang, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect”, Appl. Phys. Lett., 73(12), pp. 1691, (1998) 39.T. Minami, “New n-type transparent conducting oxides”, MRS Bull., Aug.,25(8), pp.38, (2000). 40.U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys., 98(4), pp.041301, (2005). 41.L. Vayssieres,” Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater., 15(5), pp.464, (2003) 42.D. Dimova-Malinovska, N. Tzenov, M. Tzolov and L. Vassilev, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Al thin films”, Mater. Sci. Eng. B, 52(1), pp.59, (1998). 43.Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, and M.J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns”, J. Am. Chem. Soc., 124(44), pp.12954, (2002) 44.J.S. Huang, and C.F. Lin, “Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing”, J. Appl. Phys., 103(1), pp.014304(2008) 45.C. H. Chao, J. S. Huang, and C. F. Lin, “Low-temperature growth of surface-architecture-controlled ZnO nanorods on Si substrates”, J. Phys. Chem. C., 113(2), pp.512, (2009) 46.Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, and R.P.H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions”, Chem. Mater., 17(5), pp.1001 (2005) 47.B.S. Kang, S.J. Pearton, and F. Ren, “Low temperature (<100 °C) patterned growth of ZnO nanorod arrays on Si”, Appl. Phys. Lett., 90(8), pp.083104, (2007) 48.R.B.M. Cross, M.M.D. Souza, and E.M.S. Narayanan, “A low temperature combination method for the production of ZnO nanowires”, Nanotechnology, 16(10), pp.2188, (2005) 49.X. Liao, X. Zhang, and S. Li, “The effect of residual stresses in the ZnO buffer layer on the density of a ZnO nanowire array”, Nanotechnology, 19(22), pp.225303, (2008) 50.S. Y. Chang, N. H. Yang, and Y. C Huang , “Hydrothermal growth and interface correlation of highly aligned ZnO nanorod arrays on UV-activated sol-gel transparent conducting films”, J. Electrochem. Soc., 156(11), pp.K200, (2009) 51.Ming-Shiou Lin, Chi-Chi Chen, Wei-Cheng Wang, Chia-Feng Lin, Shou-Yi Chang, “Fabrication of the selective growth ZnO nanorods with a hole-array pattern on a p-type GaN:Mg layer through a chemical bath deposition process”, Thin solid films, 518(24), pp.7398, (2010) 52.F. Xu, Y. Lu, Y. Xie, Y. Liu, “Controllable morphology evolution of electrodeposited ZnO nano micro scale structures in aqueous solution”, Mater. Des., 30(5), pp.1704, (2009) 53.X. Liu, Z. Jin, S. Bu, J. Zhao, Z. Liu, “ Growth of ZnO films with controlled morphology by aqueous solution method“, J. Am. Ceram. Soc., 89(4), pp.1226, (2006)zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10399-
dc.description.abstract本論文主軸可以分成兩部分實驗。 第一個實驗:氧化鋅奈米柱陣列成功以化學水浴法沉積晶種層,並選擇性生長於 p-type GaN:Mg layer 於低溫 (85oC)下。藉由汞燈輔助照射,氧化鋅奈米柱於水溶液中合成,生長在p-type GaN:Mg layer上的晶種層之直徑5μm的微米孔洞陣列圖案(Micro-Hole array patterns )內。由場發射掃描式電子顯微鏡(FE-SEM)生觀察得到生長完的氧化鋅奈米柱的直徑為500nm,高度為3μm。由X-ray繞射分析儀(XRD)可發現結晶性良好。而能量散布光譜儀(EDS)可計算出其成份之化學計量比,鑑定其化學組成與純度。氧化鋅奈米柱的生長優選方向、表面形貌與長寬比例,均侷限於微米孔洞陣列圖案裡,並獲得有效控制。而經由其光致激發螢光光譜(PL)可得波長位於384 nm的藍光波段。 第二個實驗:本研究以化學水浴沉積法及汞燈輔助照射,在以濺鍍法沉積氧化鋅鋁晶種層上製備氧化鋅奈米柱(Zinc oxide Nanorods on Sputtering seed layer, ZNS),並進而利用微米孔洞陣列(Micro-Hole Array, MHA)控制氧化鋅奈米柱之生長,及在以脈衝雷射法沉積氧化鋅鋁晶種層上製備氧化鋅奈米柱(Zinc oxide Nanorods on Pulsed laser deposition seed layer, ZNP)之發光二極體元件(Light Emitting Diode, LED),對其進行各種分析探討。 由場發射掃描式電子顯微鏡及X-ray繞射分析儀觀察氧化鋅鋁晶種層及氧化鋅奈米柱發現,以脈衝雷射法沉積之氧化鋅鋁晶種層,表面具有平整晶界明顯之晶粒,顯示其結晶性良好且沿(002)優選方向排列,接續以化學水浴沉積法於此晶種層生長氧化鋅奈米柱,可得到大量沿(002)優選方向生長之奈米柱。透過場發射高解析度穿透式電子顯微鏡,可佐證氧化鋅奈米柱之結晶性質及優選方向,利用顯微光激發螢光光譜可定義氧化鋅奈米柱結構之形成與光激發螢光波長及強度關係,ZNP LED之氧化鋅訊號強度高於ZNS LED,證實氧化鋅奈米柱生長於以脈衝雷射法沉積氧化鋅鋁晶種層上具有較好之光激發性質。 在元件發光強度對直流注入電流特性曲線量測中,ZNP LED及ZNS LED在20mA直流注入電流下,相較標準發光二極體元件各有54.3%及40.7%的光強度提升。在發散角特性量測中,我們觀察到ZNP LED及ZNS-MHA LED在發散角度上的改變,造成此兩種元件場型上的變化是來自於氧化鋅奈米柱結構之形成,產生與標準發光二極體元件不同光取出機制。由實驗結果可了解,利用化學水浴沉積法以及汞燈輔助照射所製備出的氧化鋅奈米柱結構,在發光元件上具有極大的應用潛力。zh_TW
dc.description.abstractIn this thesis, our experiments were performed as two parts. For the first experiment, the ZnO nanorod arrays were selective-growth on a p-type GaN:Mg layer effectively through a chemical bath deposition (CBD) at a low temperature hydrothermal synthesis (85oC) with a ZnO seed layer. The 5μm-diameter hole-array patterns of the ZnO seed layer were grown on a p-type GaN:Mg layer in aqueous solution with a mercury lamp illumination. The diameter and the height of ZnO nanorods were measured as the values of 500nm and 3μm, respectively. The preferred orientation, the surface morphology, and the aspect ratio of the ZnO nanorods can be controlled and formed on the hole-array patterned ZnO seed layer. The peak wavelength of the photoluminescence spectrum was measured at 384 nm For the second experiment, chemical bath deposition and mercury lamp illumination were used to synthesize ZnO nanorods (Zinc oxide Nanorods on Sputtering seed layer, ZNS) on aluminum zinc oxide (AZO) seed layer deposited by sputtering and then micro hole array (Micro-Hole Array, MHA) was utilized to control the growth of ZnO nanorods. ZnO nanorods (Zinc oxide Nanorods on Pulsed laser deposition seed layer, ZNP) was cultivated on AZO seed layer deposited by pulsed laser deposition on the light-emitting diode (LED) for various analysis and measurements. The field emission scanning electron microscopy and lower X-ray diffractometer were used to observe the AZO seed layer and the ZnO nanorods. The surface morphology of AZO seed layer deposited by pulsed laser deposition (PLD) has clear boundaries and obvious grains that indicated excellent crystallinity along the (002) preferred orientation. The well-aligned ZnO nanorod structure preferred oriented along the (002) direction was deposited on the AZO seed layer through a chemical bath deposition process. The ZnO nanorods structures and preferred orientation were also demonstrated shown in the micrograph of the field emission high resolution transmission electron microscopy. The photoluminescence intensity of the ZNP LED is higher than ZNS LED that indicated the higher optical property of the ZnO nanorods grown on the PLD deposited AZO seed layer. The light output power of ZNP LED and ZNS LED have 54.3% and 40.7% enhancement compared to the standard LED devices at 20mA injection current. According to divergence angle measurement, we observed the difference of ZNP LED and ZNS-MHA LED, which results from the structures of ZnO nanorods affect the light extraction mechanism. ZnO nanorods structures are fabricated by chemical bath deposition with mercury lamp illuminated have potential applications on the InGaN-based LEDs to increase the light extraction efficiency.en_US
dc.description.tableofcontents中文摘要………………………………………………………………………………...I Abstract………………………………………………………………………..………..II Chapter 1 Introduction…………………………………………………………………...1 1-1 The background of LED……………………..…………………………..………..…1 1-2 Background…………………………………………..………………………………4 1-3 The development of Zinc oxide(ZnO) ………...……………….……......…………5 1-4 Motivation of the investigation………...…………....…………………….……….9 Chapter 2 Basic principle and literature review…………………….………………….11 2-1 Light-emitting diodes light generation principle……..………………………...….11 2-2 The lighting principle of LED and external quantum efficiency(EQE)…….…..….15 2-3 The methods to enhance EQE efficiency……..…………...……………………….16 2-4 The principle of surface roughness to enhance light extraction…………..……….21 2-5 Introduction of Transparent Conductive Layer(TCL) ………………….………….23 2-6 Introduction of Zinc oxide(ZnO) …………………………….…………………….27 2-7 The fabrication of ZnO nanorods…………………………………………………..32 2-7-1 Chemical Bath Deposition(CBD)………………...……………...……………..32 2-7-2 Pulsed Laser Deposition (PLD) …………...………………………..…….……..33 2-7-3 Radio Frequency Magnetron Sputtering (R.F. Magnetron Sputtering) ……..…..36 2-8 The orientation of ZnO nanorods……………………………….………...………..38 2-8-1 The relationship between orientation and substrate………..………….….……..38 2-8-2 The effect of ZnO seed layer……………………………………………………..40 Chapter 3 The Experiments………………………………….……………………..…..41 3-1 The process of GaN samples………………………………………..…….………..41 3-2 The fabrication of ZnO nanorods………………………………...……….………..43 3-2-1 The process of chemical bath deposition(CBD)……………..…………………..44 3-2-2 Selective-growth Zinc oxide Nanorods on with a micro-hole array pattern on a p-type GaN:Mg layer of LED bulk……………………………………………………..48 3-2-3 Zinc oxide Nanorods on Sputtering seed layer LED (ZNS LED) ………..……..51 3-2-4 Zinc oxide Nanorods on Pulsed laser deposition seed layer LED (ZNP LED) ………………………………...…………………………………………..53 3-2-5 Zinc oxide Nanorods on Sputtering seed layer controled by Micro-Hole Array LED(ZNS-MHA LED)…………………………………………………………………55 3-3 Analysis and Instruments…………………………………………………………..59 3-3-1 Field Emission Scanning Electron Microscopy (FE-SEM)………………….…..59 3-3-2 Atomic Force Microscopy (AFM)…………………………………….……..…..59 3-3-3 High Resolution Transmission Electron Microscopy (TEM)…………….. ….…61 3-3-4 High Resolution X-ray Diffractometer (HRXRD)…………………………..…60 3-3-5 Micro-Photoluminescence (&micro;-PL) …………………………………………..…61 3-3-6 Light-Output Power measurements……………………………………………………….……..…62 3-3-7 Far-Field Radiation Patterns………………………………………………………………….………..63 3-3-8 Light-Intensity Profiles…………………………………………………………………………...……..63 Chapter 4 Results and Discussion…………………………………………….………..65 4-1 Cultivation of the selective-growth ZnO nanorods with a hole array pattern on a p-type GaN:Mg layer through a chemical bath deposition process…………………………………………………………………………….…...65 4-1-1 The microscopic observation of ZnO nanorod arrays (ZNA) grown on a p-type GaN:Mg layer…………………………………………………………………………..65 4-1-2 The optical and material analysis of ZnO nanorod array grown on p-type Ga:Mg layer……………………………………………………………………………71 4-2 Characterization of the well-aligned ZnO nanorod structures on sputtering and pulsed laser deposited AlZnO seed layer…………………………………………………………………………….…..…..75 4-2-1 The observation of field emission microscopy(FESEM)……………..……….…75 4-2-2 The optical analysis of ZnO nanorods structures grown on devices……………..87 4-2-3 The characterization of the current-voltage curve……………………….…….88 4-2-4 The characterization of light output power-current curve………………….…….89 4-2-5 The characterization of far-field radiation patterns (Divergent angle) ………….91 4-2-6 Analysis of Beam profiler…………………………………………...……….….93 4-2-7 Characterization of Energy dispersive spectra……………………………….….96 4-2-8 Characterization of X-ray diffraction curve (XRD) ……………………………..98 4-2-9 Observation of FE-HRTEM Micrographs……………………………………...100 4-2-10 Growth effect and mechanism of seed layer and ZnO nanorods…………...…103 Chapter 5 Conclusions and Prospects…………………….………………….………..105 5-1 The Conclusions of the Experiments…………….………………………………105 5-2 Future work………………………………………………………………………107 5-3 Conclusions and prospect…………………………………………………………109 Figure Captions Figure 1-1 The energy band gap and lattice constant of Ⅲ-Ⅴ nitride base semiconductor………………………………………………………………………….2 Figure 1- 2 The visible spectrum LEDs evolution of luminous efficiency versus time (year)………………………………………………..………………………………….3 Figure 1-3 The total reflect effect owing to difference of index between GaN and air, and the definition of light extraction cuboidc………………………………………….4 Figure 1-4 The various morphology of ZnO structures…………….…………………7 Figure 1-5 ZnO nanowires grown on sapphire substrate (a) low magnification (b)high magnification...................................................................................................................8 Figure 1-6 The schematic small lattice mismatch and strain between ZnO and GaN....10 Figure 2- 1 The schematic diagram of standard LED structure with emitting layer…..11 Figure 2-2 The schematic diagram of standard GaN-based LED device and emitting mechanism by the re-combination with hole and electron. ( utilized in our experiments)………………………..…………………………………12 Figure 2- 3 The schematic diagram of energy versus crystal momentum diagram (k) for (a)direct bangap and (b)indirect bandgap materials. ………………………….………14 Figure2-4 The schematic way to improve the external quantum efficiency..…………15 Figure2-5 Nano-scale pattern sapphire substrate with small PS sphere……….………17 Figure 2-6 The nanoepitaxial lateral overgrown structures with SiO2 nano-rods array on sapphire substrate ……………… …………………………………………………......18 Figure 2-7 The advisement of far field pattern and light extraction of LED devices with self-assembled nanorod arrays [42] …………………………………………………....19 Figure 2-8 The EL enhancement from texture surface of ITO and p-GaN[43] ….…....19 Figure 2-9 The elevation of light output power of LED devices with photonic crystal on p-GaN [44]…………………………………………….................................................20 Figure 2-10 The effect of smooth and rough surface on light extraction......................22 Figure 2-11 the schematic inferior current distribution of LED without transparent conductive layer…………………………….................................................................23 Figure 2-12 the schematic superior current distribution of LED with transparent conductive layer…………………….............................................................................24 Figure 2-13 The schematic crystal structures of ZnO (Hexagonal) ..............................27 Figure 2-14 The three kinds of crystal structures of ZnO (a) Rock-salt, (b)Zinc-blende, (c)Wurtzite....................................................................29 Figure 2-15 The schematic Wurtzite structure of ZnO..................................................30 Figure 2-16 The diagram of zinc interstitial atom (Zni) and zinc vacancy (VZn) to emit blue light.........................................................................................................................31 Figure 2-17 ZnO nanorods on ZnO seed layer by hydrothermal method[45] ............32 Figure 2-18 The schematic operation of Pulsed Laser Deposition (PLD)………....…..35 Figure 2-19 the equipments of R.F. Sputtering system…………………….…...……..37 Figure 2-20 ZnO nanorods on Si substrates with different orientation via bath deposition (a)Si(100),(b)Si(111)……………………………………………………….………………….39 Figure 2-21 The effect of seed layer on ZnO nanorods (a) with seed layer, (b) without seed layer………………………………..……………40 Figure3-1 The diagrammatic fabrication of standard GaN samples………...…………42 Figure 3-2 The synthesis equipments of ZnO nanorods…………………………….…46 Figure 3-3 The spectrum of Hg lamp…………………………………………….……47 Figure 3-4 The experimental flow diagrams were shown for the ZNR structures processes. ……………………………………………………….……………….…….49 Figure 3-5 The total experimental flow diagram for first experiment………….….….50 Figure 3-6 The experimental flow diagrams were shown for the ZNS LED and ZNP LED…………………………………………………………………………..….…….54 Figure 3-7 The experimental flow diagrams of ZNS-MHA LED………………….….57 Figure 3-8 The total experimental flow diagram for second experiment………….….58 Figure 3- 9 The schematic establishment of &micro;-PL equipments………….………...….62 Figure 3- 10 The schematic far-field radiation patterns system…………….……………..…...64 Figure 4-1 FE-SEMM micrographs of the ZNA structures on p-type Ga:Mg layer with 1000X , (a) top-view, (b) bird view of 45 degree, of the ZNR structures with Hg lamp……………………………………………………………………….…..………..66 Figure 4-2 FE-SEMM micrographs of the ZNA structures on p-type Ga:Mg layer with (a) 5000X, (b) 10000X, and (c) 50000X magnifications of the ZNR structures with Hg lamp……………………………………………………………………….………..…..67 Figure 4-3 FE-SEMM micrographs of the ZNA structures on p-type Ga:Mg layer with 10000X of the ZNR structures without Hg lamp……………………………………....68 Figure 4-4 The schematic diagram of the process for the nucleation and growth of ZnO nanorods in aqueous solution by chemical bath deposition…………………..………..70 Figure 4-5 (a) PL spectrum of the InGaN-LED with and without the ZnO nanorod array. The (b) XRD diffraction curve of ZnO nanorods and ZnO seed layer, and (c) EDS spectrum of the ZnO nanorod structures. ………………………………………….…..72 Figure 4-6 The schematic growth effect and mechanism of seed layer and ZnO nanorods (a) without Hg lamp illumination and thermal treatment, (b) with Hg lamp illumination and thermal treatment. (c)The lateral view of the ZNR structure with seed layer on a p-type GaN:Mg layer without Hg lamp illumination and thermal treatment. (d) The lateral view of the ZNR structure with seed layer on a p-type GaN:Mg layer with Hg lamp illumination and thermal treatment…... …………………………….………..74 Figure 4-7 FE-SEM plane view micrographs of the AZO seed layer on LED deposited by (a) Sputtering,(b)PLD……………………………………………………………..76 Figure 4-8 The surface topographies and morphologies of (c) the sputtering AZO seed layer and (d) the PLD AZO seed layer were observed on AFM images. ……….……..78 Figure 4-9 The plane view FE-SEM micrograph of ZnO nanorods on LED (a) ZNS LED,(b)ZNS-MHA LED, (c)ZNP LED. …………………………………..80 Figure 4-10 The lateral view FE-SEM micrograph of ZnO nanorods on LED (a) ZNS LED,(b)ZNS-MHA LED,(c)ZNP LED……………………………..…....82 Figure 4-11 The 45 degree of bird view of full device with the magnification (b) (a)300X,(b)2000X,(c)20000X……………………………………………..….84 Figure 4-12 The low-temperature photoluminescence spectra of ST-LED, ZNS-LED and ZNP-LED with 355 nm solid-state pulse laser at 90K. ………………………..….87 Figure 4-13 the current-voltage curve of ST LED, ZNS LED, ZNS-MHA LED and ZNP LED………………………………………………………………………………88 Figure 4-14 The full device image of optical microscopy (20X), (a) without the illumination of Hg lamp (b) with the illumination of Hg lamp……..89 Figure 4-15 The The curves of light output power versus current of all the LED devices…………………………………………………………………………….……89 Figure 4-16 The far-field radiation patterns of different devices………………………92 Figure 4-17 The variation curve of light emission intensity depended on the light detected angle……………………………………………………………………..……92 Figure 4-18 The beam profiler images of each devices (a)ST LED,(b)ZNS-MHA LED,(c)ZNS LED,(d)ZNP LED………………..……94 Figure 4-19 The beam profiler images of each devices (a)ST LED,(b)ZNS-MHA LED,(c)ZNS LED,(d)ZNP LED……..………………...95 Figure 4-20 EDS spectrum of AZO seed layer………..…………….. …..……. ……..97 Figure 4-21 EDS spectrum of ZnO nanorods…..……………………..……...………..97 Figure 4-22 The XRD diffraction curves of ST-LED, AZO-SLED and AZO-PLED….98 Figure 4-23 The XRD diffraction curves of ZNR structures of ST-LED, ZNR-SLED and ZNR-PLED………………..…………………………………….. …..…….…. ………99 Figure 4-24 The FE-HRTEM micrographs of (a) ZNR structures on sputtering seed layer, (b)the high resolution lattice images of ZNR structures on sputtering seed layer………………………………………………………………………….………..101 Figure 4-25 The FE-HRTEM micrographs of(a) ZNR structures on PLD seed layer, and (d) the high resolution lattice images of ZNR structures on PLD seed layer…………………………………………………………………..……………….102 Figure 4-26 The schematic growth effect and mechanism of seed layer and ZnO nanorods (a) ZnO nanorods on sputtering seed layer, (b) ZnO nanorods on PLD seed layer, (c)The lateral view of the ZNR structure with AZO seed layer on devices by sputtering, and (d) The lateral view of the ZNR structure with AZO seed layer on device by PLD.[30] …………………………………………………………………..103 Figure 5-1 The close tri-relationships among structure, property, process and performance in science and engineering…………………………………………….109 Table Captions Table 1-1 The comparison of different deposition for ZnO………………………..7 Table 2-1 General TCL materials………………………………………….....…..25 Table 2-2 The basic properties of Zinc oxide(ZnO) …………………….……..28 Table 3-1 The relationship between intensity and working distance……………..47zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2807201116454500en_US
dc.subjectZnOen_US
dc.subject氧化鋅zh_TW
dc.subjectLEDen_US
dc.subjectnanostructuresen_US
dc.subjectGaNen_US
dc.subject發光二極體zh_TW
dc.subject奈米結構zh_TW
dc.subject氮化鎵zh_TW
dc.title以化學水浴法製備優選方向氧化鋅奈米柱結構應用於氮化銦鎵發光元件zh_TW
dc.titleFabrication of Well-aligned ZnO Nanorods Architectures on InGaN-based Light Emitting Diodes with Seed Layer via Chemical Bath Depositionen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.