Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10404
標題: 以植入前驅物於膠體模板方式合成單一分散 中空氧化鋁暨其他無機物微球之研究
Implantation of Precursor on Synthesis of Monodispersed Alumina Hollow Microspheres and Other Inorganic Microspheres via Colloidal Templating
作者: 王彥文
Wang, Yen-Wen
關鍵字: agglomeration;凝聚;agglomerates;alumina;porous;團聚;氧化鋁;多孔
出版社: 材料科學與工程學系所
引用: [1] J.-F. Chen, H.-M. Ding, J.-X. Wang, L. Shao, “Preparation and characterization of porous hollow silica nanoparticles for drug delivery application,” Biomaterials, 25, 723-727, 2004. [2] L. Li, H. Song, X. Chen, “Hollow carbon microspheres prepared from polystyrene microbeads,” Carbon, 44, 587-610, 2006. [3] F. Caruso, “Nanoengineering of particle surfaces,” Adv. Mater. 13(1), 11-22, 2001. [4] N.J. Joseph, S. Lakshmi, A. Jayakrishnan, “A floating-type oral dosage form for piroxicam based on hollow polycarbonate microspheres: in vitro and in vivo evaluation in rabbits,” J. Control. Release. 79, 71-79, 2002. [5] J.-S. Yu, S. Kang, S. B. Yoon, G. Chai, “Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter,” J. Am. Chem. Soc. 124, 9382-9383, 2002. [6] Wenjiang Li, Xiaoxiang Sha, Wenjun Dong, Zichen Wang, “Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion,” Chem. Commun. 2434-2435, 2002. [7] J.P.H. Ansermet, E. Baberiswyl, “Dielectric study of hollow microsphere composites,” J. Mater. Sci. 29, 2841, 1994. [8] M. Ferroni, V. Guidi, G. Martinelli, G. Faglia, P. Nelli, G. Sberveglieri, “Characterization of a nanosized TiO2 gas sensor,” Nanostructured Mater. 7, 709, 1996. [9] Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature, Vol. 414, 289, 2001. [10] M.S. Kulkarni, D.R. Mishra, K.P. Muthe, Ajay Singh, M. Roy, S.K. Gupta, S. Kannan, “An alternative method of preparation of dosimetric grade α-Al2O3: C by vacuum-assisted post-growth thermal impurification technique,” Radiat. Meas. 39, 277-282, 2005. [11] C. Dablemont, P. Lang, C. Mangeney, J.-Y. Piquemal, V. Petkov, F. Herbst, G. Viau, “FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina,” Langmuir, 24, 5832-5841, 2008. [12] B. Sun, S. A. Mutch, R. M. Lorenz, D. T. Chiu, “Layered polyelectrolyte-silica coating for nanocapsules,” Langmuir, 21, 10763-10769, 2005. [13] F. Caruso, M. Spasova, A. Susha, M. Giersig, R. A. Caruso, “Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach,” Chem. Mater. 13, 109-116, 2001. [14] G.C. Li, Z.K. Zhang, “Synthesis of submicrometer-sized hollow titania spheres with controllable shells,” Mater. Lett. 58, 2768-2771, 2004. [15] M. Agrawal, A. Pich, S. Gupta, N. E. Zafeiropoulos, P. Simon, M. Stamm, “Synthesis of novel tantalum oxide sub-micrometer hollow spheres with tailored shell thickness,” Langmuir, 24, 1013-1018, 2008. [16] H. Zhou, T. Fan, D. Zhang, “Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates,” Microporous Mesoporous Mat. 100, 322-327, 2007. [17] J.-M. Lee, Y.-G. Lee, D.-W. Kim, C. Oh, S.-M. Koo, S.-G. Oh, “Facile and novel route for preparation of silica/silver heterogeneous composite particles with hollow structure,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 301, 48-54, 2007. [18] W.-F. Dong, J. K. Ferri, T. Adalsteinsson, M. Scho¨nhoff, G. B. Sukhorukov, H. Mo¨hwald, “Influence of shell structure on stability, integrity, and mesh size of polyelectrolyte capsules: mechanism and strategy for improved preparation,” Chem. Mater. 17, 2603-2611, 2005. [19] Y. Zhang, S. Yang, Y. Guan, W. Cao, J. Xu, “Fabrication of stable hollow capsules by covalent layer-by-layer self-assembly,” Macromolecules, 36, 4238-4240, 2003. [20] L. Wang, T. Sasaki, Y. Ebina, K. Kurashima, M. Watanabe, “Fabrication of controllable ultrathin hollow shells by layer-by-layer assembly of exfoliated titania nanosheets on polymer templates,” Chem. Mater. 14, 4827-4832, 2002. [21] F. Caruso, M. Spasova, A. Susha, M. Giersig, R. A. Caruso, “Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach,” Chem. Mater. 13, 109-116, 2001. [22] H. Nakanow and H. Nakamura, “Preparation of hollow BaTiO3 and anatase spheres by the layer-by-layer colloidal templating method,” J. Am. Ceram. Soc. 89, [4], 1455-1457, 2006. [23] Z. Liang, A. Susha, F. Caruso, “Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof,” Chem. Mater., 15, 3176-3183, 2003. [24] R. A. Caruso, A. Susha, F. Caruso, “Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres,” Chem. Mater. 13, 400-409, 2003. [25] M.-K. Park, C. Xia, R. C. Advincula, “Cross-linked, luminescent spherical colloidal and hollow-shell particles,” Langmuir, 17, 7670-7674, 2001. [26] D. Wang, R. A. Caruso, F. Caruso, “Synthesis of macroporous titania and inorganic composite materials from coated colloidal spheress-A novel route to tune pore morphology,” Chem. Mater. 13, 364-371, 2001. [27] S. Sadasivan, G. B. Sukhorukov, “Fabrication of hollow multifunctional spheres containing MCM-41 nanoparticles and magnetite nanoparticles using layer-by-layer method,” J. Colloid Interface Sci. 304, 437-441, 2006. [28] F. Caruso, R. A. Caruso, H. Mo¨hwald, “Production of hollow microspheres from nanostructured composite particles,” Chem. Mater. 11, 3309-3314, 1999. [29] B. Sun, S. A. Mutch, R. M. Lorenz, D. T. Chiu, “Layered polyelectrolyte-silica coating for nanocapsules,” Langmuir, 21, 10763-10769, 2005. [30] H. Xu, W. Wei, C. Zhang, S. Ding, X. Qu, J. Liu, Y. Lu, Z. Yang, “Low-temperature facile template synthesis of crystalline inorganic composite hollow spheres,” Chem. Asian J. 2, 828-836, 2007. [31] S. Liu, J. Rao, X. Sui, P. Cool, E. F. Vansant, G. V. Tendeloo, X. Cheng, “Preparation of hollow silica spheres with different mesostructures,” J. Non-Cryst. Solids, 354, 826-830, 2008. [32] Z. Deng, M. Chen, S. Zhou, B You, L. Wu, “A novel method for the fabrication of monodisperse hollow silica spheres,” Langmuir, 22, 6403-6407, 2006. [33] I.-H. Chen, C.-C. Wang, C.-Y. Chen, “Synthesis of mono-disperse hollow nickel spheres with a double shell structure using poly(methyl methacrylate) as a template,” Scr. Mater. 58, 37-40, 2008. [34] L. Zhang, J. Luo, M. Wu, H. Jiu, Q. Chen, “Synthesis of Eu2O3 hollow submicrometer spheres through a sol-gel template approach,” Mater. Lett. 61, 4452-4455, 2007. [35] A. Syoufian, Y. Inoue, M. Yada, K. Nakashima, “Preparation of submicrometer-sized titania hollow spheres by templating sulfonated polystyrene latex particles,” Mater. Lett. 61, 1572-1575, 2007. [36] G.C. Li, Z.K. Zhang, “Synthesis of submicrometer-sized hollow titania spheres with controllable shells,” Mater. Lett. 58, 2768-2771, 2004. [37] X. Song, L. Gao, “Synthesis, characterization, and optical properties of well-defined N-doped, hollow silica/titania hybrid microspheres,” Langmuir, 23, 11850-11856, 2007. [38] M. Agrawal, A. Pich, S. Gupta, N. E. Zafeiropoulos, P. Simon, M. Stamm, “Synthesis of novel tantalum oxide sub-micrometer hollow spheres with tailored shell thickness.” Langmuir, 24, 1013-1018, 2008. [39] R. Liu, Y. Li, H. Zhao, F. Zhao, Y. Hu, “Synthesis and characterization of Al2O3 hollow spheres,” Mater. Lett. 62, 2593-2595, 2008. [40] W. Zhao, Y. Liu, H. Li, X. Zhang, “Preparation and characterization of hollow Co3O4 spheres,” Mater. Lett. 62, 772-774, 2008. [41] H. Zhou, T. Fan, D Zhang, “Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates,” Microporous Mesoporous Mat. 100, 322-327, 2007. [42] H. X. Yang, J. F. Qian, Z. X. Chen, X. P. Ai, Y. L. Cao, “Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment,” J. Phys. Chem. C, 111, 14067-14071, 2007. [43] Z. Huang, F. Tang, “Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres,” J. Colloid Interface Sci. 281, 432-436, 2005. [44] L. Hu, Z. Tang, Z. Zhang, “Template-assisted synthesis of mesoporous LiAlO2 hollow spheres with high surface area,” Microporous Mesoporous Mat. 113, 41-46, 2008. [45] L. Li, Y. Chu, Y. Liu, L. Dong, “Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres,” J. Phys. Chem. C, 111, 2123-2127, 2007. [46] M.-M. Titirici, M. Antonietti, A. Thomas, “A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach,” Chem. Mater. 18, 3808-3812, 2006. [47] J. Zhao, X Zhao, Y. Liu, N. Tao, H. Bala, H. Zhang, Y. Jiang, K. Yu, Y. Zhu, Y. Deng, H. Yang, Z. Wang, “Ti-Si oxide composite spheres with hollow interior fabricated by emulsion/interface technique employing Ti ionic liquid,” Mater. Chem. Phys. 93, 487-494, 2005. [48] R.K. Singh, A. Garg, R. Bandyopadhyaya, B.K. Mishra, “Density fractionated hollow silica microspheres with high-yield by non-polymeric sol-gel/emulsion route,” Colloids and Surfaces A Physicochem. Eng. Aspects, 310, 39-45, 2007. [49] L. Song, X. Ge, M. Wang, Z. Zhang, “Direct preparation of silica hollow spheres in a water in oil emulsion system: The effect of pH and viscosity,” J. Non-Cryst. Solids, 352, 2230-2235, 2006. [50] H. Zhang, J. Wu, L. Zhou, D. Zhang, L. Qi, “Facile synthesis of monodisperse microspheres and gigantic hollow shells of mesoporous silica in mixed water-ethanol solvents,” Langmuir, 23, 1107-1113, 2007. [51] W. Li, M.-O. Coppens, “Synthesis and characterization of stable hollow Ti-silica microspheres with a mesoporous shell,” Chem. Mater. Vol. 17, No. 9, 2005. [52] H. Liu, Y. Ni, F. Wang, G. Yin, J. Hong, Q. Ma, Z. Xu, “Fabrication of submicron Cu2O hollow spheres in an O/W/O multiple emulsions,” Colloids and Surfaces A Physicochem. Eng. Aspects, 235, 79-82, 2004. [53] J.-M. Lee, Y.-G. Lee, D.-W. Kim, C. Oh, S.-M. Koo, S.-G. Oh, “Facile and novel route for preparation of silica/silver heterogeneous composite particles with hollow structure,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 301, 48-54, 2007. [54] L. Li, H. Song, X. Chen, “Enhancement of thermal stability of poly(divinylbenzene) microspheres,” Mater. Lett. 62, 179-182, 2008. [55] J. Shen, Z. Huang, J. Li, L. Gao, H. Zhou, Y. Qian, “Synthesis of multi-walled carbon nanotubes at low temperature through anhydrous AlCl3-assisted ethylene tetrachloride dechlorination: A new dechlorination pathway,” Carbon, 43, 2817-2833, 2005. [56] C. H. Shek, J. K. L. Lai, “Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al2O3 powders,” NanoStrctured Materials. Vol. 8, No. 5, 605-610. 1997. [57] J. Li, Y. Pan, C. Xiang, Q. Ge, J. Guo, “Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol-gel process,” Ceram. Int. 32, 587-591, 2006. [58] X. S. Zhao, M. G. Q. Lu, C. Song, “Immobilization of aluminum chloride on MCM-41 as a new catalyst system for liquid-phase isopropylation of naphthalene,” J. Mol. Catal. A-Chem. 191, 67-74, 2003. [59] T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell, J. H. Satcher, “Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors,” Chem. Mater. 17, 395-401, 2005. [60] Y. Lee,, A. J. Woo, K.-S. Han, K. S. Ryu, D. Sohn, D. Kim, H. Lee, “Solid-state NMR studies of Al-doped and Al2O3-coated LiCoO2,” Electrochim. Acta, 50, 491-494, 2004. [61] K. J. D. MacKenzie, J. Temuujin, M. E. Smith, P. Angerer, Y. Kameshima, “Effect of mechanochemical activation on the thermal reactions of boehmite (γ-AlOOH) and γ-Al2O3,” Electrochim. Acta, 359, 87-94, 2000. [62] T. Hyodo, M. Murakami, Y. Shimizu, M. Egashira, “Preparation of hollow alumina microspheres by microwave-induced plasma pyrolysis of atomized precursor solution,” J. Eur. Ceram. Soc. 25, 3563-3572, 2005. [63] H. Wang, S.-y. Zheng, X.-d. Li, D.-p. Kim, “Preparation of three-dimensional ordered macroporous SiCN ceramic using sacrificing template method,” Microporous Mesoporous Mat. 80, 357-362, 2005. [64] Y. Chen, D. D. Dionysiou, “A comparative study on physicochemical properties and photocatalytic behavior of macroporous TiO2-P25 composite films and macroporous TiO2 films coated on stainless steel substrate,” Appl. Catal. A-Gen.317, 129-137, 2007.
摘要: 
本研究採取一簡易方法,在無添加介面活性劑的條件下,可成功合成非凝聚(Non-agglomerate),且具有良好流動性之單一分散氧化鋁中空微球結構。製程使用有機高分子微球作為犧牲模板,無水氯化鋁當作合成氧化鋁之前驅體,四氯乙烯則當作反應溶劑,使金屬氯化物能有效植入有機核內部,形成一核殼結構,經高溫鍛燒之過程,移除內部之有機模板,形成氧化鋁中空微球。依AES縱深分析結果,證明含鋁前驅物是以植入之方式,存在於含氧有機微球內部;由SEM及DLS結果證實,採植入前驅物搭配有機模板製程,在不使用任何介面活性劑的情況下,確實有助於獲得單一分散氧化鋁中空微球結構,且擁有極佳的尺寸均一性。此外,本研究亦嘗試改變反應合成溫度及鍛燒溫度,將獲得之粉末分別利用傅立葉轉換紅外線光譜儀(FTIR)、固態核磁共振質譜儀(NMR)、場發射掃描式電子顯微鏡(FE-SEM)、穿透式電子顯微鏡(TEM)、X光繞射分析儀(XRD)、比表面積分析儀(BET)及動態光散射粒徑分析儀(DLS)分析比較,並分別探討反應合成機制、氧化鋁殼層微結構觀察及孔徑分佈檢測等。
實驗結果證實,球殼表面微結構、結晶性及比表面積,會隨鍛燒溫度之增加而可分為三個階段。首先,將鍛燒溫度由室溫提升至500℃時,球殼屬非晶相皺褶狀緻密結構;在900℃時開始有γ-Al2O3相及些許的α-Al2O3相出現,由SEM及BET結果得知,900℃之球殼表面有許多奈米級孔洞出現;當加熱至1000℃和1100℃時,球殼形成穩定相之Al2O3結構,殼層表面趨於平滑,且球殼在晶界處有微裂縫存在;由BET 結果得知,比表面積及總孔洞體積會隨鍛燒溫度之增加,有增加之趨勢。提高反應溫度之結果,則可由TEM結果證實,球殼厚度有明顯增厚之趨勢;藉此,本研究即可利用調整反應溫度,有效控制殼層厚度。
此外,本研究亦利用SEM、EDS、TEM及SAD等分析結果,證實藉由改變製程所植入之金屬氯化物成分,可有效合成其他單一組成成份之金屬氧化物中空球及其純金屬中空球;本研究報告即利用此製程,成功合成出二氧化鈦、氧化鋅、氧化鐵、純鉑(Pt)等中空微球結構。
最後,本研究更進一步證實,本製程亦可成功製備雙組成成份之Pt-Al2O3複合殼層中空微球結構;不論採一階段(方案一)或兩階段(方案二)製程,AlCl3及H2PtCl6兩種前驅物皆可有效植入有機模板內部,只需經由鍛燒過程移除有機模板,即可獲得非凝聚且具有良好流動性之Pt-Al2O3複合殼層中空微球結構。

A facile and versatile route has been developed to synthesize non-agglomerating, “flowable” hollow alumina microspheres without addition of any surfactant. This novel method uses organic polymer microspheres as a sacrifice template, anhydrous aluminum chloride as a precursor for alumina, and tetrachloroethylene as a reactive solvent in a way that the metal chloride is implanted into surface of the organic cores to form a core-shell structure. Alumina microspheres with hollow interiors are formed after thermal pyrolysis to remove the organic template. From the depth profile of Auger analysis, the precursor used in this study facilitates the implantation of Al ions into the surface of the organic core. From SEM and DLS results, mono-dispersed alumina hollow spheres with a uniform size and a non-agglomerating character are obtained. Furthermore, both reaction and calcination temperatures have been changed to elucidate the mechanism, surface microstructure and pore-size distribution of the hollow alumina spheres by FTIR, NMR, FE-SEM, TEM, XRD, BET and DLS.
The evolution of surface microstructure, crystallization and specific surface area with temperature has been examined and is divided into three stages. First, from room temperature to 500oC, the shell structure is amorphous with crinkly and airtight character. The shell structure begins to change into γ-Al2O3 (major) and α-Al2O3 (minor) at 900oC. The surface of shells shows nano-sized pores at 900oC from SEM and BET analyses. When heated to 1000oC and 1100oC, the shell forms stable α-Al2O3 structure with smooth surface. Cracks often occur at the triple grain junctions. The specific surface area and the total pore volume of the hollow spheres increase with the calcination temperature. TEM results further reveal that the shell thickness is increased with the increasing reactive temperature, indicating that the thickness of shell can be tailored to a significant extent.
Furthermore, hollow metal oxides spheres and pure hollow metal spheres of various compositions, such as Al2O3, TiO2, ZnO, Fe3O4 and pure hollow Pt spheres can also be successfully fabricated by using this methodology, and are examined by SEM, EDS, TEM and SAD.
Finally, this research also demonstrated that the developed process route can be further extended to the synthesis of hollow Pt-Al2O3 composite microspheres by either one-step or two-step route, which implants AlCl3 and H2PtCl6 into the surface of the organic core to form a core-shell structure before the template core is thermally removed. Platinum-Alumina microspheres with hollow interiors are then synthesized with non-agglomerating and “flowable” character.
URI: http://hdl.handle.net/11455/10404
其他識別: U0005-0308200712444700
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.