Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorChiang, Ming-Fengen_US
dc.identifier.citation1. Ikada, Y.; Tsuji, H., Biodegradable polyesters for medical and ecological applications. Macromolecular Rapid Communications 2000, 21, (3), 117-132. 2. Wheaton, C. A.; Hayes, P. G.; Ireland, B. J., Complexes of Mg, Ca and Zn as homogeneous catalysts for lactide polymerization. Dalton Transactions 2009, (25), 4832-4846. 3. Domb, A. J.; Kost, J.; Wiseman, D. M., Handbook of Biodegradable Polymers. Taylor & Francis Group: Amsterdam, 1997; Vol. 7. 4. Gupta, B.; Revagade, N.; Hilborn, J., Poly(lactic acid) fiber: An overview. Progress in Polymer Science 2007, 32, (4), 455-482. 5. Wu, W.; Li, W.; Wang, L.; Zhang, P.; Zhang, J., Density functional theory study on lactides: Geometries, IR, NMR and electronic spectra. Journal of Molecular Structure: THEOCHEM 2007, 816, (1-3), 13-19. 6. Lunt, J., Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability 1998, 59, (1-3), 145-152. 7. Anderson, K. S.; Schreck, K. M.; Hillmyer, M. A., Toughening Polylactide. Polymer Reviews 2008, 48, (1), 85 - 108. 8. Hofmann, G. O.; Wagner, F. D., New implant designs for bioresorbable devices in orthopaedic surgery. Clinical Materials 1993, 14, (3), 207-215. 9. Anselme, K.; Flautre, B.; Hardouin, P.; Chanavaz, M.; Ustariz, C.; Vert, M., Fate of bioresorbable poly(lactic acid) microbeads implanted in artificial bone defects for cortical bone augmentation in dog mandible. Biomaterials 1993, 14, (1), 44-50. 10. Russias, J.; Saiz, E.; Nalla, R. K.; Gryn, K.; Ritchie, R. O.; Tomsia, A. P., Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation. Materials Science and Engineering: C 2006, 26, (8), 1289-1295. 11. Park, T. G.; Cohen, S.; Langer, R., Poly(L-lactic acid)/Pluronic blends: characterization of phase separation behavior, degradation, and morphology and use as protein-releasing matrixes. Macromolecules 1992, 25, (1), 116-122. 12. Mikos, A. G.; Lyman, M. D.; Freed, L. E.; Langer, R., Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 1994, 15, (1), 55-58. 13. Dorgan, J. R.; Janzen, J.; Clayton, M. P.; Hait, S. B.; Knauss, D. M., Melt rheology of variable L-content poly(lactic acid). Journal of Rheology 2005, 49, (3), 607-619. 14. Tsuji, H.; Ikada, Y., Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromolecular Chemistry and Physics 1996, 197, (10), 3483-3499. 15. Lim, L. T.; Auras, R.; Rubino, M., Processing technologies for poly(lactic acid). Progress in Polymer Science 2008, 33, (8), 820-852. 16. Averous, L., Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. 2004, 44, (3), 231 - 274. 17. Perego, G.; Cella, G. D.; Bastioli, C., Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J. Appl. Polym. Sci. 1996, 59, (1), 37-43. 18. Auras, R.; Harte, B.; Selke, S., Polylactides. A new era of biodegradable polymers for packaging application. In ANTEC, 2005; pp 3240-3244. 19. Gupta, M. C.; Deshmukh, V. G., Thermal oxidative degradation of poly-lactic acid. Colloid & Polymer Science 1982, 260, (3), 308-311. 20. Gupta, M. C.; Deshmukh, V. G., Thermal oxidative degradation of poly-lactic acid. Colloid & Polymer Science 1982, 260, (5), 514-517. 21. Cam, D.; Marucci, M., Influence of residual monomers and metals on poly (-lactide) thermal stability. Polymer 1997, 38, (8), 1879-1884. 22. Babanalbandi, A.; Hill, D.; Hunter, D.; Kettle, L., Thermal stability of poly(lactic acid) before and after γ-radiolysis. Polymer International 1999, 48, (10), 980-984. 23. Nishida, H.; Mori, T.; Hoshihara, S.; Fan, Y. J.; Shirai, Y.; Endo, T., Effect of tin on poly(L-lactic acid) pyrolysis. Polymer Degradation and Stability 2003, 81, (3), 515-523. 24. Wachsen, O.; Platkowski, K.; Reichert, K. H., Thermal degradation of poly--lactide--studies on kinetics, modelling and melt stabilisation. Polymer Degradation and Stability 1997, 57, (1), 87-94. 25. Wang, Y.; Steinhoff, B.; Brinkmann, C.; Alig, I., In-line monitoring of the thermal degradation of poly(l-lactic acid) during melt extrusion by UV-vis spectroscopy. Polymer 2008, 49, (5), 1257-1265. 26. Jamshidi, K.; Hyon, S. H.; Ikada, Y., Thermal characterization of polylactides. Polymer 1988, 29, (12), 2229-2234. 27. Mori, T.; Nishida, H.; Shirai, Y.; Endo, T., Effects of chain end structures on pyrolysis of poly(L-lactic acid) containing tin atoms. Polymer Degradation and Stability 2004, 84, (2), 243-251. 28. Fan, Y. J.; Nishida, H.; Shirai, Y.; Endo, T., Control of racemization for feedstock recycling of PLLA. Green Chemistry 2003, 5, (5), 575-579. 29. Fan, Y. J.; Nishida, H.; Mori, T.; Shirai, Y.; Endo, T., Thermal degradation of poly(L-lactide): effect of alkali earth metal oxides for selective L,L-lactide formation. Polymer 2004, 45, (4), 1197-1205. 30. Nishida, H.; Fan, Y. J.; Mori, T.; Oyagi, N.; Shirai, Y.; Endo, T., Feedstock recycling of flame-resisting poly(lactic acid)/aluminum hydroxide composite to L,L-lactide. Industrial & Engineering Chemistry Research 2005, 44, (5), 1433-1437. 31. Motoyama, T.; Tsukegi, T.; Shirai, Y.; Nishida, H.; Endo, T., Effects of MgO catalyst on depolymerization of poly-l-lactic acid to l,l-lactide. Polymer Degradation and Stability 2007, 92, (7), 1350-1358. 32. Wachsen, O.; Reichert, K. H.; Kruger, R. P.; Much, H.; Schulz, G., Thermal decomposition of biodegradable polyesters--III. Studies on the mechanisms of thermal degradation of oligo-l-lactide using SEC, LACCC and MALDI-TOF-MS. Polymer Degradation and Stability 1997, 55, (2), 225-231. 33. Fan, Y. J.; Nishida, H.; Hoshihara, S.; Shirai, Y.; Tokiwa, Y.; Endo, T., Pyrolysis kinetics of poly(L-lactide) with carboxyl and calcium salt end structures. Polymer Degradation and Stability 2003, 79, (3), 547-562. 34. Kopinke, F. D.; Remmler, M.; Mackenzie, K.; Moder, M.; Wachsen, O., Thermal decomposition of biodegradable polyesters--II. Poly(lactic acid). Polymer Degradation and Stability 1996, 53, (3), 329-342. 35. Kopinke, F. D.; Mackenzie, K., Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly([beta]-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis 1997, 40-41, 43-53. 36. Fan, Y. J.; Nishida, H.; Shirai, Y.; Tokiwa, Y.; Endo, T., Thermal degradation behaviour of poly(lactic acid) stereocomplex. Polymer Degradation and Stability 2004, 86, (2), 197-208. 37. Liu, X.; Zou, Y.; Li, W.; Cao, G.; Chen, W., Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature. Polymer Degradation and Stability 2006, 91, (12), 3259-3265. 38. Marras, S. I.; Zuburtikudis, I.; Panayiotou, C., Nanostructure vs. microstructure: Morphological and thermomechanical characterization of poly(l-lactic acid)/layered silicate hybrids. European Polymer Journal 2007, 43, (6), 2191-2206. 39. Zhou, Q. Y.; Xanthos, M., Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polymer Degradation and Stability 2009, 94, (3), 327-338. 40. Kissinger, H. E., Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry 1957, 29, (11), 1702-1706. 41. Pramoda, K. P.; Liu, T. X.; Liu, Z. H.; He, C. B.; Sue, H. J., Thermal degradation behavior of polyamide 6/clay nanocomposites. Polymer Degradation and Stability 2003, 81, (1), 47-56. 42. Ozawa, T., A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan 1965, 38, (11), 1881-1886. 43. Flynn, J. H.; Wall, L. A., A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters 1966, 4, (5), 323-328. 44. Zou, H. T.; Yi, C. H.; Wang, L. X.; Liu, H. T.; Xu, W. L., Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. Journal of Thermal Analysis and Calorimetry 2009, 97, (3), 929-935. 45. Sinha Ray, S.; Bousmina, M., Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science 2005, 50, (8), 962-1079. 46. Nishino, T.; Hirao, K.; Kotera, M.; Nakamae, K.; Inagaki, H., Kenaf reinforced biodegradable composite. Composites Science and Technology 2003, 63, (9), 1281-1286. 47. Oksman, K.; Skrifvars, M.; Selin, J. F., Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology 2003, 63, (9), 1317-1324. 48. Lu, X.; Lv, X.; Sun, Z.; Zheng, Y., Nanocomposites of poly(l-lactide) and surface-grafted TiO2 nanoparticles: Synthesis and characterization. European Polymer Journal 2008, 44, (8), 2476-2481. 49. Andričić, B.; Kovačić, T.; Perinović, S.; Grgić, A., Thermal Properties of Poly(L-lactide)/Calcium Carbonate Nanocomposites. Macromolecular Symposia 2008, 263, (1), 96-101. 50. Zhang, D.; Kandadai, M. A.; Cech, J.; Roth, S.; Curran, S. A., Poly(l-lactide) (PLLA)/Multiwalled Carbon Nanotube (MWCNT) Composite:  Characterization and Biocompatibility Evaluation. The Journal of Physical Chemistry B 2006, 110, (26), 12910-12915. 51. Xu, J.-Z.; Chen, T.; Yang, C.-L.; Li, Z.-M.; Mao, Y.-M.; Zeng, B.-Q.; Hsiao, B. S., Isothermal Crystallization of Poly(l-lactide) Induced by Graphene Nanosheets and Carbon Nanotubes: A Comparative Study. Macromolecules 2010, 43, (11), 5000-5008. 52. Zhao, Y.; Qiu, Z.; Yang, W., Effect of Functionalization of Multiwalled Nanotubes on the Crystallization and Hydrolytic Degradation of Biodegradable Poly(l-lactide). The Journal of Physical Chemistry B 2008, 112, (51), 16461-16468. 53. Shieh, Y. T.; Liu, G. L., Effects of carbon nanotubes on crystallization and melting behavior of poly(L-lactide) via DSC and TMDSC studies. Journal of Polymer Science Part B: Polymer Physics 2007, 45, (14), 1870-1881. 54. Paul, M. A.; Alexandre, M.; Degee, P.; Henrist, C.; Rulmont, A.; Dubois, P., New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 2003, 44, (2), 443-450. 55. Wu, T. M.; Wu, C. Y., Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: Preparation and characterization. Polymer Degradation and Stability 2006, 91, (9), 2198-2204. 56. Wu, T. M.; Chiang, M. F., Fabrication and characterization of biodegradable poly(lactic acid)/layered silicate nanocomposites. Polym. Eng. Sci. 2005, 45, (12), 1615-1621. 57. Chen, G.-X.; Kim, H.-S.; Shim, J.-H.; Yoon, J.-S., Role of Epoxy Groups on Clay Surface in the Improvement of Morphology of Poly(l-lactide)/Clay Composites. Macromolecules 2005, 38, (9), 3738-3744. 58. Nam, P. H.; Kaneko, M.; Ninomiya, N.; Fujimori, A.; Masuko, T., Melt intercalation of poly(L-lacticle) chains into clay galleries. Polymer 2005, 46, (18), 7403-7409. 59. Chen, G. X.; Choi, J. B.; Yoon, J. S., The role of functional group on the exfoliation of clay in poly(L-lactide). Macromolecular Rapid Communications 2005, 26, (3), 183-187. 60. Shim, J. H.; Kim, E. S.; Joo, J. H.; Yoon, J. S., Properties and morphology of poly(L-lactide)/clay composites according to the clay modification. J. Appl. Polym. Sci. 2006, 102, (5), 4983-4988. 61. Fujimori, A.; Ninomiya, N.; Masuko, T., Structure and mechanical properties in drawn poly(L-lactide)/clay hybrid films. Polym. Adv. Technol. 2008, 19, (12), 1735-1744. 62. Okada, A.; Usuki, A., The chemistry of polymer-clay hybrids. Materials Science and Engineering: C 1995, 3, (2), 109-115. 63. Krikorian, V.; Pochan, D. J., Poly (l-Lactic Acid)/Layered Silicate Nanocomposite:  Fabrication, Characterization, and Properties. Chem. Mat. 2003, 15, (22), 4317-4324. 64. Hun Shim, J.; Soo Kim, E.; Hiuk Joo, J.; Yoon, J. S., Properties and morphology of poly(L-lactide)/clay composites according to the clay modification. J. Appl. Polym. Sci. 2006, 102, (5), 4983-4988. 65. Sinha Ray, S.; Yamada, K.; Okamoto, M.; Fujimoto, Y.; Ogami, A.; Ueda, K., New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polymer 2003, 44, (21), 6633-6646. 66. Sinha Ray, S.; Maiti, P.; Okamoto, M.; Yamada, K.; Ueda, K., New Polylactide/Layered Silicate Nanocomposites. 1. Preparation, Characterization, and Properties. Macromolecules 2002, 35, (8), 3104-3110. 67. Paul, M. A.; Delcourt, C.; Alexandre, M.; Degee, P.; Monteverde, F.; Rulmont, A.; Dubois, P., (Plasticized) Polylactide/(Organo-)Clay Nanocomposites by in situ Intercalative Polymerization. Macromolecular Chemistry and Physics 2005, 206, (4), 484-498. 68. You, Y. W.; Zhao, H. T.; Vance, G. F., Hybrid organic-inorganic derivatives of layered double hydroxides and dodecylbenzenesulfonate: Preparation and adsorption characteristics. J. Mater. Chem. 2002, 12, (4), 907-912. 69. Goh, K.-H.; Lim, T.-T.; Dong, Z., Application of layered double hydroxides for removal of oxyanions: A review. Water Research 2008, 42, (6-7), 1343-1368. 70. Khan, A. I.; O''Hare, D., Intercalation chemistry of layered double hydroxides: recent developments and applications. J. Mater. Chem. 2002, 12, (11), 3191-3198. 71. Lopez-Salinas, E.; Garcia-Sanchez, M.; Montoya, J. A.; Acosta, D. R.; Abasolo, J. A.; Schifter, I., Structural Characterization of Synthetic Hydrotalcite-like [Mg1-xGax(OH)2](CO3)x/2‧mH2O. Langmuir 1997, 13, (17), 4748-4753. 72. Gago, S.; Pillinger, M.; Valente, A. A.; Santos, T. M.; Rocha, J.; Goncalves, I. S., Immobilization of Oxomolybdenum Species in a Layered Double Hydroxide Pillared by 2,2‘-Bipyridine-5,5‘-dicarboxylate Anions. Inorganic Chemistry 2004, 43, (17), 5422-5431. 73. Hibino, T.; Jones, W., New approach to the delamination of layered double hydroxides. J. Mater. Chem. 2001, 11, (5), 1321-1323. 74. Hibino, T.; Kobayashi, M., Delamination of layered double hydroxides in water. J. Mater. Chem. 2005, 15, (6), 653-656. 75. O''Leary, S.; O''Hare, D.; Seeley, G., Delamination of layered double hydroxides in polar monomers: new LDH-acrylate nanocomposites. Chem. Commun. 2002, (14), 1506-1507. 76. Choy, J.-H.; Kwak, S.-Y.; Park, J.-S.; Jeong, Y.-J.; Portier, J., Intercalative Nanohybrids of Nucleoside Monophosphates and DNA in Layered Metal Hydroxide. Journal of the American Chemical Society 1999, 121, (6), 1399-1400. 77. Ding, P.; Zhang, M.; Gai, J.; Qu, B. J., Homogeneous dispersion and enhanced thermal properties of polystyrenelayered double hydroxide nanocomposites prepared by in situ reversible addition-fragmentation chain transfer (RAFT) polymerization. J. Mater. Chem. 2007, 17, (11), 1117-1122. 78. Yoo, J. S.; Bhattacharyya, A. A.; Radlowski, C. A., De-SOx catalyst: an XRD study of magnesium aluminate spinel and its solid solutions. Industrial & Engineering Chemistry Research 1991, 30, (7), 1444-1448. 79. Parker, L. M.; Milestone, N. B.; Newman, R. H., The Use of Hydrotalcite as an Anion Absorbent. Industrial & Engineering Chemistry Research 1995, 34, (4), 1196-1202. 80. Du, B. X.; Guo, Z. H.; Fang, Z. P., Effects of organo-clay and sodium dodecyl sulfonate intercalated layered double hydroxide on thermal and flame behaviour of intumescent flame retarded polypropylene. Polymer Degradation and Stability 2009, 94, (11), 1979-1985. 81. Liao, C.-S.; Ye, W.-B., Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes. Electrochimica Acta 2004, 49, (27), 4993-4998. 82. Choy, J.-H.; Jung, J.-S.; Oh, J.-M.; Park, M.; Jeong, J.; Kang, Y.-K.; Han, O.-J., Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 2004, 25, (15), 3059-3064. 83. Adachi-Pagano, M.; Forano, C.; Besse, J.-P., Delamination of layered double hydroxides by use of surfactants. Chem. Commun. 2000, (1), 91-92. 84. Ogawa, M.; Asai, S., Hydrothermal Synthesis of Layered Double Hydroxide−Deoxycholate Intercalation Compounds. Chem. Mat. 2000, 12, (11), 3253-3255. 85. Sugahara, Y.; Yokoyama, N.; Kuroda, K.; Kato, C., AlN formation from a hydrotalcite-polyacrylonitrile intercalation compound by carbothermal reduction. Ceramics International 1988, 14, (3), 163-167. 86. Costa, F. R.; Abdel-Goad, M.; Wagenknecht, U.; Heinrich, G., Nanocomposites based on polyethylene and Mg-Al layered double hydroxide. I. Synthesis and characterization. Polymer 2005, 46, (12), 4447-4453. 87. Wang, D.-Y.; Das, A.; Costa, F. R.; Leuteritz, A.; Wang, Y.-Z.; Wagenknecht, U.; Heinrich, G., Synthesis of Organo Cobalt−Aluminum Layered Double Hydroxide via a Novel Single-Step Self-Assembling Method and Its Use as Flame Retardant Nanofiller in PP. Langmuir 2010, 26, (17), 14162-14169. 88. Hsueh, H.-B.; Chen, C.-Y., Preparation and properties of LDHs/epoxy nanocomposites. Polymer 2003, 44, (18), 5275-5283. 89. Zammarano, M.; Bellayer, S.; Gilman, J. W.; Franceschi, M.; Beyer, F. L.; Harris, R. H.; Meriani, S., Delamination of organo-modified layered double hydroxides in polyamide 6 by melt processing. Polymer 2006, 47, (2), 652-662. 90. Hsueh, H. B.; Chen, C. Y., Preparation and properties of LDHs/polyimide nanocomposites. Polymer 2003, 44, (4), 1151-1161. 91. Wang, G. A.; Wang, C. C.; Chen, C. Y., The disorderly exfoliated LDHs/PMMA nanocomposites synthesized by in situ bulk polymerization: The effects of LDH-U on thermal and mechanical properties. Polymer Degradation and Stability 2006, 91, (10), 2443-2450. 92. Peng, H.; Tjiu, W. C.; Shen, L.; Huang, S.; He, C.; Liu, T., Preparation and mechanical properties of exfoliated CoAl layered double hydroxide (LDH)/polyamide 6 nanocomposites by in situ polymerization. Composites Science and Technology 2009, 69, (7-8), 991-996. 93. Manzi-Nshuti, C.; Songtipya, P.; Manias, E.; Jimenez-Gasco, M. M.; Hossenlopp, J. M.; Wilkie, C. A., Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: Effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymers. Polymer 2009, 50, (15), 3564-3574. 94. Nyambo, C.; Songtipya, P.; Manias, E.; Jimenez-Gasco, M. M.; Wilkie, C. A., Effect of MgAl-layered double hydroxide exchanged with linear alkyl carboxylates on fire-retardancy of PMMA and PS. J. Mater. Chem. 2008, 18, (40), 4827-4838. 95. Wang, L.; Su, S.; Chen, D.; Wilkie, C. A., Variation of anions in layered double hydroxides: Effects on dispersion and fire properties. Polymer Degradation and Stability 2009, 94, (5), 770-781. 96. Sorrentino, A.; Gorrasi, G.; Tortora, M.; Vittoria, V.; Costantino, U.; Marmottini, F.; Padella, F., Incorporation of Mg-Al hydrotalcite into a biodegradable poly (epsilon, caprolactone) by high energy ball milling. Polymer 2005, 46, (5), 1601-1608. 97. Hsu, S. F.; Wu, T. M.; Liao, C. S., Nonisothermal crystallization behavior and crystalline structure of poly(3-hydroxybutyrate)/layered double hydroxide nanocomposites. J. Polym. Sci. Pt. B-Polym. Phys. 2007, 45, (9), 995-1002. 98. Hsu, S. F.; Wu, T. M.; Liao, C. S., Isothermal crystallization kinetics of poly(3-hydroxybutyrate)/layered double hydroxide nanocomposites. J. Polym. Sci. Pt. B-Polym. Phys. 2006, 44, (23), 3337-3347. 99. Zhou, Q.; Verney, V.; Commereuc, S.; Chin, I.-J.; Leroux, F., Strong interfacial attrition developed by oleate/layered double hydroxide nanoplatelets dispersed into poly(butylene succinate). J. Colloid Interface Sci. 2010, 349, (1), 127-133. 100. Chung, Y.-L.; Lai, H.-M., Preparation and properties of biodegradable starch-layered double hydroxide nanocomposites. Carbohydrate Polymers 2010, 80, (2), 525-532. 101. Pucciariello, R.; Tammaro, L.; Villani, V.; Vittoria, V., New nanohybrids of poly(epsilon-caprolactone) and a modified Mg/Al hydrotalcite: Mechanical and thermal properties. J. Polym. Sci. Pt. B-Polym. Phys. 2007, 45, (8), 945-954. 102. Pan, P. J.; Zhu, B.; Dong, T.; Inoue, Y., Poly(L-Lactide)/Layered Double Hydroxides Nanocomposites: Preparation and Crystallization Behavior. J. Polym. Sci. Pt. B-Polym. Phys. 2008, 46, (20), 2222-2233. 103. Costantino, U.; Bugatti, V.; Gorrasi, G.; Montanari, F.; Nocchetti, M.; Tammaro, L.; Vittoria, V., New Polymeric Composites Based on Poly(epsilon-caprolactone) and Layered Double Hydroxides Containing Antimicrobial Species. Acs Applied Materials & Interfaces 2009, 1, (3), 668-677. 104. Bugatti, V.; Costantino, U.; Gorrasi, G.; Nocchetti, M.; Tammaro, L.; Vittoria, V., Nano-hybrids incorporation into poly(epsilon-caprolactone) for multifunctional applications: Mechanical and barrier properties. European Polymer Journal 2010, 46, (3), 418-427. 105. Romeo, V.; Gorrasi, G.; Vittoria; Chronakis, I. S., Encapsulation and Exfoliation of Inorganic Lamellar Fillers into Polycaprolactone by Electrospinning. Biomacromolecules 2007, 8, (10), 3147-3152. 106. Tammaro, L.; Costantino, U.; Nocchetti, M.; Vittoria, V., Incorporation of active nano-hybrids into poly(epsilon-caprolactone) for local controlled release: Antifibrinolytic drug. Applied Clay Science 2009, 43, (3-4), 350-356. 107. Wu, T.-M.; Hsu, S.-F.; Shih, Y.-F.; Liao, C.-S., Thermal degradation kinetics of biodegradable poly(3-hydroxybutyrate)/layered double hydroxide nanocomposites. Journal of Polymer Science Part B: Polymer Physics 2008, 46, (12), 1207-1213. 108. Wang, D.-Y.; Leuteritz, A.; Wang, Y.-Z.; Wagenknecht, U.; Heinrich, G., Preparation and burning behaviors of flame retarding biodegradable poly(lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polymer Degradation and Stability 2010, 95, (Compendex), 2474-2480. 109. Yang, Q. Z.; Sun, D. J.; Zhang, C. G.; Wang, X. J.; Zhao, W. A., Synthesis and Characterization of Polyoxyethylene Sulfate Intercalated Mg−Al−Nitrate Layered Double Hydroxide. Langmuir 2003, 19, (14), 5570-5574. 110. Lin, J. J.; Juang, T. Y., Intercalation of layered double hydroxides by poly(oxyalkylene)-amidocarboxylates: tailoring layered basal spacing. Polymer 2004, 45, (23), 7887-7893. 111. Dagnon, K. L.; Chen, H. H.; Innocentini-Mei, L. H.; D''Souza, N. A., Poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)]/layered double hydroxide nanocomposites. Polymer International 2009, 58, (2), 133-141. 112. Wang, J. W.; Kalinichev, A. G.; Kirkpatrick, R. J.; Hou, X. Q., Molecular modeling of the structure and energetics of hydrotalcite hydration. Chem. Mat. 2001, 13, (1), 145-150. 113. Ma, R. Z.; Liu, Z. P.; Li, L.; Iyi, N.; Sasaki, T., Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets. J. Mater. Chem. 2006, 16, (39), 3809-3813. 114. Evans, D. G.; Slade, R. C. T., Structural aspects of layered double hydroxides. Springer: Berlin, 2006; Vol. 119, p 1-87. 115. Millange, F.; Walton, R. I.; O''Hare, D., Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds. J. Mater. Chem. 2000, 10, (7), 1713-1720. 116. Theo Kloprogge, J.; Frost, R. L., Infrared emission spectroscopic study of the thermal transformation of Mg-, Ni- and Co-hydrotalcite catalysts. Applied Catalysis A: General 1999, 184, (1), 61-71. 117. Konig, U.; Pollmann, H., Synthesis, properties and characterisation of manganeous Layered Double Hydroxides using in situ X-ray techniques. In European Powder Diffraction Epdic 8, Andersson, Y.; Mittemeijer, E. J.; Welzel, U., Eds. Trans Tech Publications Ltd: Zurich-Uetikon, 2004; Vol. 443-4, pp 307-310. 118. Lombardo, G. M.; Pappalardo, G. C., Thermal effects on mixed metal (Zn/Al) layered double hydroxides: Direct modeling of the X-ray powder diffraction line shape through molecular dynamics simulations. Chem. Mat. 2008, 20, (17), 5585-5592. 119. Wegrzyn, A.; Rafalska-Lasocha, A.; Majda, D.; Dziembaj, R.; Papp, H., The influence of mixed anionic composition of Mg-Al hydrotalcites on the thermal decomposition mechanism based on in situ study. Journal of Thermal Analysis and Calorimetry 2010, 99, (2), 443-457. 120. Tao, Q.; Yuan, J.; Frost, R. L.; He, H.; Yuan, P.; Zhu, J., Effect of surfactant concentration on the stacking modes of organo-silylated layered double hydroxides. Applied Clay Science 2009, 45, (4), 262-269. 121. Kloprogge, J. T.; Frost, R. L., Fourier Transform Infrared and Raman Spectroscopic Study of the Local Structure of Mg-, Ni-, and Co-Hydrotalcites. Journal of Solid State Chemistry 1999, 146, (2), 506-515. 122. Kloprogge, J. T.; Wharton, D.; Hickey, L.; Frost, R. L., Infrared and Raman study of interlayer anions CO32-, NO3-, SO42- and ClO4- in Mg/Al hydrotalcite. Am. Miner. 2002, 87, (5-6), 623-629. 123. Martinez-Gallegos, S.; Herrero, M.; Rives, V., In situ microwave-assisted polymerization of polyethylene terephtalate in layered double hydroxides. J. Appl. Polym. Sci. 2008, 109, (3), 1388-1394. 124. Du, L. C.; Qu, B. J.; Meng, Y. Z.; Zhu, Q., Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation. Composites Science and Technology 2006, 66, (7-8), 913-918. 125. Inbaraj, B. S.; Chiu, C. P.; Ho, G. H.; Yang, J.; Chen, B. H., Effects of temperature and pH on adsorption of basic brown 1 by the bacterial biopolymer poly([gamma]-glutamic acid). Bioresource Technology 2008, 99, (5), 1026-1035. 126. Kister, G.; Cassanas, G.; Vert, M., Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 1998, 39, (2), 267-273. 127. Krikorian, V.; Pochan, D. J., Crystallization Behavior of Poly(l-lactic acid) Nanocomposites:  Nucleation and Growth Probed by Infrared Spectroscopy. Macromolecules 2005, 38, (15), 6520-6527. 128. Feng, J.-T.; Ma, X.-Y.; Evans, D. G.; Li, D.-Q., Enhancement of Metal Dispersion and Selective Acetylene Hydrogenation Catalytic Properties of a Supported Pd Catalyst. Industrial & Engineering Chemistry Research 2011, 50, (4), 1947-1954. 129. Vyalikh, A.; Massiot, D.; Scheler, U., Structural characterisation of aluminium layered double hydroxides by Al-27 solid-state NMR. Solid State Nuclear Magnetic Resonance 2009, 36, (1), 19-23. 130. Blanton, T. N.; Majumdar, D.; Melpolder, S. M. In Microstructure and physical properties of clay-polymer composites, Organic/Inorganic Hybrid Materials-2000, April 24, 2000 - April 28, 2000, San Francisco, CA, United states, 2000; Materials Research Society: San Francisco, CA, United states, 2000; pp CC11.14.1-CC11.14.7. 131. Hosemann, V. R.; Wilke, W., Gitterstorungen in polyathylen. Die Makromolekulare Chemie 1968, 118, (1), 230-249. 132. Reinholdt, M. X.; Kirkpatrick, R. J., Experimental Investigations of Amino Acid-Layered Double Hydroxide Complexes:  Glutamate−Hydrotalcite. Chem. Mat. 2006, 18, (10), 2567-2576. 133. Perez-Ramirez, J.; Abello, S.; van der Pers, N. M., Memory effect of activated Mg-Al hydrotalcite: In situ XRD studies during decomposition and gas-phase reconstruction. Chem.-Eur. J. 2007, 13, (3), 870-878. 134. Yuan, Q.; Wei, M.; Evans, D. G.; Duan, X., Preparation and investigation of thermolysis of L-aspartic acid-intercalated layered double hydroxide. Journal of Physical Chemistry B 2004, 108, (33), 12381-12387. 135. Wei, M.; Yuan, Q.; Evans, D. G.; Wang, Z. Q.; Duan, X., Layered solids as a ''molecular container'' for pharmaceutical agents: L-tyrosine-intercalated layered double hydroxides. J. Mater. Chem. 2005, 15, (11), 1197-1203. 136. Kooli, F.; Chisem, I. C.; Vucelic, M.; Jones, W., Synthesis and Properties of Terephthalate and Benzoate Intercalates of Mg−Al Layered Double Hydroxides Possessing Varying Layer Charge. Chem. Mat. 1996, 8, (8), 1969-1977. 137. Newman, S. P.; Di Cristina, T.; Coveney, P. V.; Jones, W., Molecular Dynamics Simulation of Cationic and Anionic Clays Containing Amino Acids. Langmuir 2002, 18, (7), 2933-2939. 138. Prevot, V.; Briois, V.; Cellier, J.; Forano, C.; Leroux, F., An in-situ investigation of LDH-acetate prepared in polyol, under moderate thermal treatment. Journal of Physics and Chemistry of Solids 2008, 69, (5-6), 1091-1094. 139. Li, C.; Wang, L.; Evans, D. G.; Duan, X., Thermal Evolution and Luminescence Properties of Zn−Al-Layered Double Hydroxides Containing Europium(III) Complexes of Ethylenediaminetetraacetate and Nitrilotriacetate. Industrial & Engineering Chemistry Research 2009, 48, (4), 2162-2171. 140. Wei, M.; Wang, J.; He, J.; Evans, D. G.; Duan, X., In situ FT-IR, in situ HT-XRD and TPDE study of thermal decomposition of sulfated [beta]-cyclodextrin intercalated in layered double hydroxides. Microporous and Mesoporous Materials 2005, 78, (1), 53-61. 141. Wei, M.; Xu, X. Y.; He, J.; Yuan, Q.; Rao, G. Y.; Evans, D. G.; Pu, M.; Yang, L., Preparation and thermal decomposition studies Of L-tyrosine intercalated MgAl, NiAl and ZnAl layered double hydroxides. Journal of Physics and Chemistry of Solids 2006, 67, (7), 1469-1476. 142. Yang, W.; Kim, Y.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T., A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide. Chem. Eng. Sci. 2002, 57, (15), 2945-2953. 143. Wei, M.; Shi, S.; Wang, J.; Li, Y.; Duan, X., Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD. Journal of Solid State Chemistry 2004, 177, (7), 2534-2541. 144. Maiti, P.; Yamada, K.; Okamoto, M.; Ueda, K.; Okamoto, K., New polylactide/layered silicate nanocomposites: Role of organoclays. Chem. Mat. 2002, 14, (11), 4654-4661. 145. Chang, J.-H.; An, Y. U.; Cho, D.; Giannelis, E. P., Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II). Polymer 2003, 44, (13), 3715-3720. 146. Dagnon, K. L.; Ambadapadi, S.; Shaito, A.; Ogbomo, S. M.; DeLeon, V.; Golden, T. D.; Rahimi, M.; Nguyen, K.; Braterman, P. S.; D''Souza, N. A., Poly(L-lactic acid) Nanocomposites with Layered Double Hydroxides Functionalized with Ibuprofen. J. Appl. Polym. Sci. 2009, 113, (3), 1905-1915. 147. Ha, J. U.; Xanthos, M., Novel modifiers for layered double hydroxides and their effects on the properties of polylactic acid composites. Applied Clay Science 2010, 47, (3-4), 303-310. 148. Katiyar, V.; Gerds, N.; Koch, C. B.; Risbo, J.; Hansen, H. C. B.; Plackett, D., Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. Polymer Degradation and Stability 2010, 95, (Compendex), 2563-2573. 149. Mahboobeh, E.; Yunus, W. M. Z. W.; Hussein, Z.; Ahmad, M.; Ibrahim, N. A., Flexibility improvement of poly(lactic acid) by stearate-modified layered double hydroxide. J. Appl. Polym. Sci. 2010, 118, (Compendex), 1077-1083. 150. Miyata, T.; Masuko, T., Morphology of poly(-lactide) solution-grown crystals. Polymer 1997, 38, (16), 4003-4009. 151. Costa, F. R.; Wagenknecht, U.; Jehnichen, D.; Goad, M. A.; Heinrich, G., Nanocomposites based on polyethylene and Mg-Al layered double hydroxide. Part II. Rheological characterization. Polymer 2006, 47, (5), 1649-1660. 152. Wen, X.; Lin, Y.; Han, C.; Zhang, K.; Ran, X.; Li, Y.; Dong, L., Thermomechanical and optical properties of biodegradable poly(L-lactide)/silica nanocomposites by melt compounding. J. Appl. Polym. Sci. 2009, 114, (Compendex), 3379-3388. 153. Wilson, O. C.; Olorunyolemi, T.; Jaworski, A.; Borum, L.; Young, D.; Siriwat, A.; Dickens, E.; Oriakhi, C.; Lerner, M., Surface and interfacial properties of polymer-intercalated layered double hydroxide nanocomposites. Applied Clay Science 1999, 15, (1-2), 265-279. 154. Madaleno, L.; Schjodt-Thomsen, J.; Pinto, J. C., Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding. Composites Science and Technology 2010, 70, (5), 804-814. 155. Du, L. C.; Qu, B. J., Structural characterization and thermal oxidation properties of LLDPE/MgAl-LDH nanocomposites. J. Mater. Chem. 2006, 16, (16), 1549-1554. 156. Lim, S. T.; Hyun, Y. H.; Choi, H. J.; Jhon, M. S., Synthetic Biodegradable Aliphatic Polyester/Montmorillonite Nanocomposites. Chem. Mat. 2002, 14, (4), 1839-1844. 157. Yu, Z.; Yin, J.; Yan, S.; Xie, Y.; Ma, J.; Chen, X., Biodegradable poly(l-lactide)/poly([var epsilon]-caprolactone)-modified montmorillonite nanocomposites: Preparation and characterization. Polymer 2007, 48, (21), 6439-6447. 158. Messersmith, P. B.; Giannelis, E. P., Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry 1995, 33, (7), 1047-1057. 159. Nielsen, L. E., Models for the Permeability of Filled Polymer Systems. Journal of Macromolecular Science: Part A - Chemistry 1967, 1, (5), 929-942. 160. Taubner, V.; Shishoo, R., Influence of processing parametzh_TW
dc.description.abstract本研究利用共沉澱法(coprecipitation)成功合成出具有良好層狀堆疊結構之鎂鋁型層狀雙氫氧化合物(layered double hydroxide, LDH)。由於LDH為一親水性層狀無機材料且高度的層間靜電力所引起之層間距離狹小問題,使其不易脫層分散於高分子基材中。為了改善LDH與親油性高分子基材間相容性與提升LDH層間距離,本研究首先利用具有生物相容性與生物降解特性之聚乳酸低聚合物[polylactide with carboxyl end group (PLA-COOH)]與聚麩胺酸[sodium γ-polyglutamate (γ-PGA)]進行LDH表面改質,以利LDH在與高分子製備成奈米複合材料時,高分子鏈能滲透或插層進入LDH層間,進而獲得具有較佳LDH分散性之高分子奈米複合材料。從廣角X光繞射儀(WAXD)之結果發現LDH經由PLA-COOH和γ-PGA改質後(p-LDH和γ-LDH),其層間距離由7.98 A分別增加至14.03 A和15.29 A。元素分析儀(EA)與感應耦合電漿原子發射光譜分析儀(ICP-AES)之結果亦顯示p-LDH和γ-LDH層間之硝酸根離子於經過陰離子交換法改質後,分別被PLA-COOH和γ-PGA給取代。在研究LDH熱裂解行為對其結構影響中,由臨場廣角X光繞射儀(in situ WAXD)與臨場傅立葉紅外線光譜儀(in situ FTIR)之結果得知LDH於升溫過程中,層間水分子之逸失行為會使得LDH於氫氧金屬結構層、層間水分子與陰離子間之氫鍵作用受到破壞,進而導致LDH層間距離縮小與層狀堆疊結構產生改變。 研究中,同時藉由溶液混合法與熔融混煉法製備聚乳酸[poly(L-lactide), PLLA]/層狀雙氫氧化合物奈米複合材料,並探討LDH層狀無機材料之添加對於PLLA材料之機械性質、阻水氣性質與熱裂解行為之影響。由WAXD搭配穿透式電子顯微鏡(TEM)之結果證實LDH於未經過表面改質前,是以團聚型態存在於PLLA基材中;而利用p-LDH和γ-LDH所製備之PLLA/LDH高分子奈米複合材料結果顯示經表面改質之p-LDH和γ-LDH層板分別以剝離和插層型態存在於PLLA高分子基材。由動態熱機械分析儀(DMA)之量測結果發現,相較於未改質LDH與γ-LDH之添加,具有良好分散程度之p-LDH的添加,可使得PLLA儲存模數(storage modulus)顯著提升。當PLLA高分子添加3 wt% p-LDH時,可使得PLLA儲存模數提升120%。在利用熔融混煉法製備PLLA/LDH與PLLA/γ-LDH奈米複材薄膜之阻水氣性質的量測結果中,顯示當PLLA高分子中添加5 wt% γ-LDH後,使得PLLA之阻水氣性質提升116%。 然而,熱重量分析儀(TGA)結果顯示鎂鋁型LDH之添加可能於高溫環境下催化並加速PLLA之熱裂解行為,使得PLLA之熱穩定性隨著LDH含量增加而明顯下降。由PLLA高分子裂解動力學研究結果亦發現PLLA之熱裂解活化能於未改質或改質LDH添加後皆隨著含量增加產生下降之趨勢,顯示LDH的添加,於高溫環境下可能與PLLA產生反應並劣化了PLLA材料之熱穩定性。在利用熱裂解氣相層析質譜儀(Py-GC/MS)分析PLLA熱裂解揮發物質時,結果顯示LDH的添加改變PLLA熱裂解產物之組成比例,隱含著PLLA之熱裂解行為與機制於LDH添加後產生改變。相較於PLLA高分子是於較高熱裂解溫度下藉由分子間和分子內酯交換反應(inter- and intra-transesterification)生成丙交酯(lactide)和環狀低聚合物(cyclic oligomer);PLLA/LDH奈米複合材料之熱裂解則是在含鎂和鋁之LDH催化下,利用解聚合反應(unzipping reaction)產生以lactide為主之熱裂解產物。此外,從熱裂解結果也發現層間陰離子之改變亦可能對PLLA/LDH之熱裂解行為與機制產生影響。zh_TW
dc.description.abstractThe present study aims to investigate the relationship between the structure and property of novel nanocomposites that are prepared with eco-friendly magnesium-aluminum (Mg-Al) layered double hydroxide (LDH) as a nanofiller and biodegradable poly(L-lactide) (PLLA). In addition, to clarify the influences of LDH on the thermal stability and/or thermal degradation behavior of PLLA, the pyrolysis process of these novel bionanocomposites was kinetically and mechanistically investigated. To enhance chemical compatibility between the hydrophilic LDH layers and the hydrophobic PLLA matrix, a [Mg0.68Al0.32(OH)2](CO3)0.06(NO3)0.20‧H2O was modified by a polylactide with carboxyl end group (PLA-COOH) and a sodium γ-polyglutamate (γ-PGA) using the anion exchange method, respectively. The composition of the organo-modified LDH (i.e., p-LDH and γ-LDH), identified by element analyzer (EA) and inductively coupled plasma atomic emission spectrometer (ICP-AES), exhibits that the nitrates are replaced by organomodifiers. After intercalation, both organo-modified LDHs, with the interlayer distance increased from 7.98 A to 14.03 A and 15.29 A, respectively, may be suitable for preparing PLLA/LDH nanocomposites. Moreover, the results suggested that both organomodifiers were arranged in the interlayer spacing of LDH in a tilted monolayer arrangement. In situ Fourier transform infrared spectroscopy (in situ FTIR) and in situ wide-angle X-ray diffraction (in situ WAXD) results indicated that the nature of intercalated anions and elimination of water molecules can influence the hydrogen bonding area among the intercalated anions, water molecules, and hydroxide sheets of LDH. Nanocomposites with various loadings of unmodified and organo-modified LDHs were prepared by a solution blending and a melt blending process. The results from WAXD and transmission electron microscopy (TEM) showed that unmodified LDH was unevenly dispersed throughout the PLLA matrix with the formation of large aggregates. Conversely, p-LDH and γ-LDH allow the formation of a randomly dispersed and an intercalated nanocomposite, respectively. The storage modulus determined by dynamic mechanical analysis showed that mechanical properties of exfoliated nanocomposites (3 wt% p-LDH) exhibit 120% enhancement when compared to that of the PLLA. The results can be attributed to the better dispersion of LDH platelets and the good interaction between the LDH layers and the PLLA matrix. Thus, the water vapor barrier property of the PLLA/LDH films was improved with increasing LDH concentration and dispersion of LDH. According to thermogravimetric analysis (TGA) results, the thermal stability of PLLA/LDH nanocomposites was significantly lower than that of a pure PLLA matrix, perhaps because the metallic compounds of LDH catalyzed the degradation of the PLLA. Moreover, the degradation activation energies of the PLLA/LDH samples, analyzed using the Kissinger method and the Ozawa-Flynn-Wall method, revealed that the decrease in thermal stability is in the following order: neat PLLA > intercalated PLLA-γL nanocomposites > PLLA-L microcomposites > exfoliated PLLA-pL nanocomposites. Finally, pyrolysis products of these PLLA/LDH nanocomposites were studied using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The results indicated that the primary pyrolyzates of PLLA/LDH samples were L,L- and/or D,D-lactides, while the pyrolyzates of neat PLLA were composed of a large amount of cyclic oligomers as well as lactides. From these results, it follows that the metallic compounds of LDH significantly decreased the thermal degradation temperatures of PLLA and caused the formation of primary L,L- and/or D,D-lactides via unzipping depolymerization.en_US
dc.description.tableofcontents致謝 i 摘要 ii Abstract iv Contents vi List of Tables ix List of Figures x Nomenclature xv Chapter 1 Introduction and Literature Review 1 1.1 Introduction 1 1.2 Polylactide 3 1.2.1 General properties and drawbacks of PLLA 6 Physicochemical 6 Mechanical properties 7 Permeability 8 1.2.2 Thermal degradation behavior of PLLA 8 1.2.3 Theoretical kinetic models for thermal degradation 11 1.3 PLLA/layered silicate nanocomposites 13 1.4 An overview of the layered double hydroxide-related polymer nanocomposites… 16 1.4.1 Layered double hydroxides 16 1.4.2 Non-degradable polymer/LDH nanocomposites 19 1.4.3 Biodegradable polymer/LDH nanocomposites 26 1.5 Research motivation and synopsis of this study 30 Chapter 2 Materials and Experimental Methods 32 2.1 Materials description 32 2.1.1 Polymers 32 2.1.2 Anionic modifiers and other raw materials 32 2.2 Synthesis of the LDH 33 2.2.1 Preparation of LDH 33 2.2.2 Modification of LDH by anionic modifier 33 Intercalation of PLA-COOH into the LDH 34 Intercalation of γ-PGA into the LDH 34 2.3 Fabrication of PLLA/LDH nanocomposites 34 2.3.1 Preparation of PLLA/p-LDH nanocomposites by solution intercalation 34 2.3.2 Preparation of PLLA nanocomposites with LDH-NO3 and γ-LDH 35 Mixing in solution 35 Mixing in Brabender plasticorder 35 2.4 Characterizations 36 2.4.1 Gel permeation chromatography 36 2.4.2 X-ray diffraction analysis 37 The structure of LDH 37 Morphology of PLLA nanocomposites 37 2.4.3 Transmission electron microscopy 37 2.4.4 Fourier transform infrared analysis 38 2.4.5 Thermogravimetric analysis 38 2.4.6 Pyrolysis-gas chromatography/mass spectrometry 38 2.4.7 Mechanical properties 39 Dynamic mechanical analysis 39 Tensile testing 39 2.4.8 Permeability 40 2.4.9 Component analysis 40 2.4.10 Nuclear magnetic resonance 40 Chapter 3 Intercalation of Biocompatible Anions in Mg/Al Layered Double Hydroxides: An in situ WAXD and FTIR Investigation 41 3.1 Introduction 42 3.2 Results and Discussion 43 3.2.1 Structural and composition of LDHs 43 3.2.2 Paracrystalline distortion of LDH-NO3 and γ-LDH 49 3.2.3 In situ study of thermal decomposition behaviors of LDH 57 3.3 Conclusions 66 Chapter 4 Influence of LDH Interlayer Anions on Dispersion, Thermal, and Mechanical Properties of PLLA/LDH Nanocomposites 67 4.1 Introduction 68 4.2 Results and Discussion 69 4.2.1 Morphology of PLLA/LDH nanocomposites 69 4.2.2 Mechanical properties of PLLA/LDH nanocomposites 76 Dynamic mechanical properties of exfoliated PLLA-pL nanocomposites 76 Mechanical properties of the other PLLA/LDH systems 78 4.2.3 Evaluation of thermal stability 84 4.2.4 Barrier properties of PLLA-L and PLLA-γL system 87 4.3 Conclusion 90 Chapter 5 Effect of LDH on Thermal Degradation Behavior of Biodegradable PLLA Nanocomposites 91 5.1 Introduction 92 5.2 Results and Discussion 93 5.2.1 Thermal stability of exfoliated PLLA-pL nanocomposites 93 Thermal degradation behavior of PLLA-pL nanocomposites 93 Dynamic thermal degradation of PLLA-pL nanocomposites 99 Thermal degradation mechanism of PLLA-pL nanocomposites 105 5.2.2 Thermal stability of PLLA-L and PLLA-γL composites 107 Thermal degradation behavior of both PLLA/LDH systems 107 Analytical treatment of TGA data by kinetic methods 111 Thermal degradation mechanism of PLLA-γL nanocomposites 118 5.3 Conclusion 124 Chapter 6 Summary 125 References 129 Publications Arising from This Study 143zh_TW
dc.subjectlayered double hydroxideen_US
dc.subjectthermal degradationen_US
dc.titlePreparation and Pyrolysis Behaviors of Poly(L-lactide)/Layered Double Hydroxide Nanocompositesen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:材料科學與工程學系
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.