Please use this identifier to cite or link to this item:
標題: 直流/射頻濺鍍系統沉積含錫/鈮摻雜之二氧化鈦薄膜微結構與特性分析
Microstructure and Characteristics of TiO2 Thin Films with Sn and Nb Doping Prepared by DC/RF Co-sputtering
作者: 姚曉強
Yao, Hsiao-Chiang
關鍵字: TiO2;二氧化鈦;Sn-doped TiO2;Nb-doped TiO2;dc/rf co-sputtering system;microstructure;optical properties;photocatalysis;摻雜錫;摻雜鈮;直流/射頻共沈積系統;微結構;光學性質;光觸媒
出版社: 材料科學與工程學系所
引用: [1] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, 238 (1972) 37-38. [2] D. F. Ollis and H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam, 1993. [3] M. Anpo, T. Shima, S. Kodama, and Y. Kubokawa, “Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: size quantization effects and reaction intermediates,” J. Phys. Chem., 91 (1987) 4305-4310. [4] E. R. Carraway, A. J. Hoffman, and M. R. Hoffmann, “Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids,” Environ. Sci. Technol., 28 (5) (1994) 786-793. [5] Y. R. Do, W. Lee, K. Dwight, and A. Wold, “The effect of WO3 on the photocatalytic activity of TiO2,” J. Solid State Chem., 108 (1994) 198-201. [6] O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical processes for water treatment,” Chem. Rev., 93 (1993) 671-698. [7] M. C. Canela, R. M. Alberici, R. C. R. Sofia, M. N. Eberlin, and W. F. Jardim, “Destruction of malodorous compounds using heterogeneous photocatalysis,” Environ. Sci. Technol., 33 (1999) 2788-2792. [8] N. Serpone, I. Texier, A. V. Emeline, P. Pichat, H. Hidaka, and J. Zhao, “Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO2/water interfaces in the presence of prominent hole scavengers,” J. Photochem. Photobiol. A: Chem., 136 (2000) 145-155. [9] R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, “Photocatalytic degradation of dyes by using a membrane reactor,” Chem. Eng. Process., 43 (2004) 1103-1114. [10] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev., 95 (1995) 69. [11] S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1980. [12] A. J. Bard, “Photoelectrochemistry,” Science, 207 (1980) 139-144. [13] C. S. Turchi and D. F. Ollis, “Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack,” J. Catal., 122 (1990) 178-192. [14] K. Rajeshwar, “Photoelectrochemistry and the environment,” J. Appl. Electrochem., 25 (1995) 1067-1082. [15] Y. Ohko, A. Fujishima, and K. Hashimoto, “Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst,” J. Phys. Chem. B, 102 (1998) 1724-1729. [16] T. Kawai and T. Sakata, “Conversion of carbohydrate into hydrogen fuel by a photocatalytic process,” Nature, 286 (1980) 474-476. [17] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, “Light-induced amphiphilic surfaces,” Nature, 388 (1997) 431-432. [18] T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, and K. Hashimoto, “Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass,” Thin Solid Films, 351 (1999) 260-263. [19] D. Noguchi, Y. Kawamata, and T. Nagatomo, “The response of TiO2 photocatalysts codoped with nitrogen and carbon to visible light,” J. Electrochem. Soc., 152 (2005) D124-129. [20] L. Miao, S. Tanemura, Y. Kondo, M. Iwata, S. Toh, and K. Kaneko, “Microstructure and bactericidal ability of photocatalytic TiO2 thin films prepared by rf helicon magnetron sputtering,” Appl. Surf. Sci., 238 (2004) 125-131. [21] K. Takagi, T. Makimoto, H. Hiraiwa, and T. Negishi, “Photocatalytic, antifogging mirror,” J. Vac. Sci. Technol. A, 19 (2001) 2931-2935. [22] Y. Paz, Z. Luo, L. Rabenberg, and A. Heller, “Photooxidative self-cleaning transparent titanium dioxide films on glass,” J. Mater. Res., 10 (1995) 2842-2848. [23] A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chem. Rev., 95 (1995) 735-758. [24] K. E. Karakitsou and X. E. Verykios, “Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage,” J. Phys. Chem., 97 (1993) 1184-1189. [25] W. Choi, A. Termin, and M. R. Hoffmann, “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics,” J. Phys. Chem., 98 (1994) 13669-13679. [26] S. T. Martin, C. L. Morrison, and M. R. Hoffmann, “Photochemical mechanism of size-quantized vanadium-doped TiO2 particles,” J. Phys. Chem., 98 (1994) 13695-13704. [27] M. I. Litter, “Heterogeneous photocatalysis transition metal ions in photocatalytic systems,” Appl. Catal. B: Environ., 23 (1999) 89-114. [28] S. K. Zheng, T. M. Wang, W. C. Hao, and R. Shen, “Improvement of photocatalytic activity of TiO2 thin film by Sn ion implantation,” Vacuum, 65 (2002) 155-159. [29] A. Fuerte, M. D. Hernández-Alonso, A. J. Maira, A. Martínez-Arias, M. Fernández-García, J. C. Conesa, J. Soria, and G. Munuera, “Nanosize Ti-W mixed oxides: effect of doping level in the photocatalytic degradation of toluene using sunlight-type excitation,” J. Catal., 212 (2002) 1-9. [30] S. Sakthivel and H. Kisch, “Daylight photocatalysis by carbon-modified,” Angew. Chem. Int. Ed., 42 (2003) 4908-4911. [31] H. Irie, Y. Watanabe, and K. Hashimoto, “Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst,” Chem. Lett., 32 (2003) 772-773. [32] C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk, and W. F. Maier, “Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst,” Appl. Catal. B, 32 (2001) 215-227. [33] D. H. Lee, Y. S. Cho, W. I. Yi, T. S. Kim, J. K. Lee, and H. J. Jung, “Metalorganic chemical vapor deposition of TiO2:N anatase thin film on Si substrate,” Appl. Phys. Lett., 66 (1995) 815-816. [34] N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: an x-ray photoelectron spectroscopy study,” J. Appl. Phys., 72 (1992) 3072-3079. [35] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, 293 (2001) 269-271. [36] T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, and Y. Taga, “Band-gap narrowing of titanium dioxide by nitrogen doping,” Jpn. J. Appl. Phys., 40 (2001) L561-563. [37] T. Lindgren, J. M. Mwabora, E. Avendaño, J. Jonsson, A. Hoel, C.-G. Granqvist, and S.-E. Lindquist, “Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering,” J. Phys. Chem. B, 107 (2003) 5709-5716. [38] T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Appl. Catal. B, 42 (2003) 403-409. [39] H. Irie, Y. Watanabe, and K. Hashimoto, “Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders,” J. Phys. Chem. B, 107 (2003) 5483-5486. [40] J. L. Gole and J. D. Stout, “Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale,” J. Phys. Chem. B, 108 (2004) 1230-1240. [41] S. N. Subbarao, Y. H. Yun, R. Kershaw, K. Dwight, and A. Wold, “Electrical and optical properties of the system TiO2-xFx,” Inorg. Chem., 18 (1979) 488-492. [42] A. Hattori, M. Yamamoto, H. Tada, and S. Ito, “A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films,” Chem. Lett., 27 (1998) 707-708. [43] T. Yamaki, T. Sumita, and S. Yamamoto, “Formation of TiO2-xFx compounds in fluorine-implanted TiO2,” J. Mater. Sci. Lett., 21 (2002) 33-35. [44] J. C. Yu, J. Yu, W. Ho, Z. Jiang, and L. Zhang, “Effect of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders,” Chem. Mater., 14 (2002) 3808-3816. [45] D. Gonbeau, C. Guimon, G. P.-Guillouzo, A. Levasseur, G. Meunier, and R. Dormoy, “XPS study of thin films of titanium oxysulfides,” Surf. Sci., 254 (1991) 81-89. [46] E. L. D. Hebenstreit, W. Hebenstreit, and U. Diebold, “Structures of sulfur on TiO2(110) determined by scanning tunneling microscopy, X-ray photoelectron spectroscopy and low-energy electron diffraction,” Surf. Sci., 470 (2001) 347-360. [47] E. L. D. Hebenstreit, W. Hebenstreit, H. Geisler, S. N. Thornburg, C. A. Ventrice, Jr., D. A. Hite, P. T. Sprunger, and U. Diebold, “Sulfur on TiO2(110) studied with resonant photoemission,” Phys. Rev. B, 64 (2001) 115418. [48] T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, “Band gap narrowing of titanium dioxide by sulfur doping,” Appl. Phys. Lett., 81 (2002) 454-456. [49] T. Umebayashi, T. Yamaki, S. Tanaka, and K. Asai, “Visible light-induced degradation of methylene blue on S-doped TiO2,” Chem. Lett., 32 (2003) 330-331. [50] T. Ohno, T. Mitsui, and M. Matsumura, “Photocatalytic activity of S-doped TiO2 photocatalyst under visible light,” Chem. Lett., 32 (2003) 364-365. [51] L. Lin, W. Lin, Y. Zhu, B. Zhao, and Y. Xie, “Phosphor-doped titania - a novel photocatalyst active in visible light,” Chem. Lett., 34 (2005) 284-285. [52] I. Sopyan, S. Murasawa, K. Hashimoto, and A. Fujishima, “Highly efficient TiO2 film photocatalyst. Degradation of gaseous acetaldehyde,” Chem. Lett., 23 (1994) 723-726. [53] M. Koelsch, S. Cassaignon, J. F. Guillemoles, J. P. Jolivet, “Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol-gel method,” Thin Solid Films, 403-404 (2002) 312-319. [54] L. M. Williams and D. W. Hess, “Structural properties of titanium dioxide films deposited in an rf glow discharge,” J. Vac. Sci. Technol. A, 1 (1983) 1810-1819. [55] A. Conde-Gallardo, N. Castillo, and M. Guerrero, “Growth kinetics of TiO2 films deposited by aerosol-assisted chemical-vapor deposition from two different precursors (Ti-n-butoxide and Ti diisopropoxide),” J. Appl. Phys., 98 (2005) 054908. [56] V. Mikhelashvili and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” J. Appl. Phys., 89 (2001) 3256-3269. [57] H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, and F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., 75 (1994) 2042-2047. [58] S. Ben Amor, G. Baud, J. P. Besse, and M. Jacquet, “Elaboration and characterization of titania coatings,” Thin Solid Films, 293 (1997) 163-169. [59] N. Martin, C. Rousselot, D. Rondot, F. Palmino, and R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films, 300 (1997) 113-121. [60] T. Asanuma, T. Matsutani, C. Liu, T. Mihara, and M. Kiuchi, “Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma,” J. Appl. Phys., 95 (2004) 6011-6016. [61] M. Gilo and N. Croitoru, “Properties of TiO2 films prepared by ion-assisted deposition using a gridless end-Hall ion source,” Thin Solid Films, 283 (1996) 84-89. [62] T. Sumita, H. Otsuka, H. Kubota, M. Nagata, Y. Honda, R. Miyagawa, T. Tsurushima, and T. Sadoh, “Ion-beam modification of TiO2 film to multilayered photocatalyst,” Nucl. Instr. And Meth. B, 148 (1999) 758-761. [63] J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films, 305 (1997) 270-273. [64] M. Yamagishi, S. Kuriki, P. K. Song, and Y. Shigesato, “Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering,” Thin Solid Films, 442 (2003) 227-231. [65] K. Eufinger, E. N. Janssen, H. Poelman, D. Poelman, R. De Gryse, and G. B. Marin, “The effect of argon pressure on the structural and photocatalytic characteristics of TiO2 thin films deposited by d.c. magnetron sputtering,” Thin Solid Films, 515 (2006) 425-429. [66] F. Zhang, Z. Zheng, X. Ding, Y. Mao, Y. Chen, Z. Zhou, S. Yang, and X. Liu, “Highly oriented rutile-type TiO2 films synthesized by ion beam enhanced deposition,” J. Vac. Sci. Technol. A, 15 (1997) 1824-1827. [67] T. M. Wang, S. K. Zheng, W. C. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin films prepared by r.f. magnetron sputtering method,” Surf. Coat. Technol., 155 (2002) 141-145. [68] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate,” Surf. Coat. Technol., 153 (2002) 93-99. [69] L. Sirghi, T. Aoki, and Y. Hatanaka, “Hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering deposition,” Thin Solid Films, 422 (2002) 55-61. [70] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., 77 (2002) 744-750. [71] S. Ichikawa and R. Doi, “Photoelectrocatalytic hydrogen production from water on transparent thin film titania of different crystal structures and quantum efficiency characteristics,” Thin Solid Films, 292 (1997) 130-134. [72] N. Negishi, K. Takeuchi, and T. Ibusuki, “The surface structure of titanium dioxide thin film photocatalyst,” Appl. Surf. Sci., 121/122 (1997) 417-420. [73] S. K. Zheng, G. Xiang, T. M. Wang, F. Pan, C. Wang, and W. C. Hao, “Photocatalytic activity studies of TiO2 thin films prepared by r.f. magnetron reactive sputtering,” Vacuum, 72 (2004) 79-84. [74] D. Wicaksana, A. Kobayashi, and A. Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A, 10 (1992) 1479-1482. [75] M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci., 79 (2005) 47-154. [76] J. Lin, J. C. Yu, D. Lo, and S. K. Lam, “Photocatalytic activity of rutile Ti1-xSnxO2 solid solutions,” J. Catal., 183 (1999) 368-372. [77] S. L. de Albuquerque Maranhão and R. M. Torresi, “Electrochemical and chromogenics kinetics of lithium intercalation in anodic niobium oxide films,” Electrochim. Acta, 43 (1998) 257-264. [78] M. A. Aegerter, “Sol-gel niobium pentoxide: a promising material for electrochromic coatings, betteries, nanocrystalline solar cells and catalysis,” Sol. Energy Mater. Sol. Cells, 68 (2001) 401-422. [79] H. Shimizu, H. Sato, S. Nishimura, and M. Honda, “Electrical properties of anodically oxidized Nb2O5 and Si-doped Nb2O5 films,” Jpn. J. Appl. Phys., 44 (2005) 6664-6666. [80] D. D. Mulmi, T. Sekiya, N. Kamiya, S. Kurita, Y. Murakami, and T. Kodaira, “Optical and electric properties of Nb-doped anatase TiO2 single crystal,” J. Phys. Chem. Solids, 65 (2004) 1181-1185. [81] J. Osorio-Guillén, S. Lany, and A. Zunger, “Actomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO2,” Phys. Rev. Lett., 100 (2008) 036601. [82] D. Mardare and P. Hones, “Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements,” Mater. Sci. Eng. B, 68 (1999) 42-47. [83] Y. Gao, “In-situ IR and spectroscopic ellipsometric analysis of growth process and structural properties of Ti1-xNbxO2 thin films by metal-organic chemical vapor deposition,” Thin Solid Films, 346 (1999) 73-81. [84] J. Arbiol, J Cerdà, G. Dezanneau, A. Cirera, F. Peiró, A. Cornet, and J. R. Morante, “Effects of Nb doping on the TiO2 anatase-to-rutile phase transition,” J. Appl. Phys., 92 (2002) 853-861. [85] S. -D. Mo and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Phys. Rev. B, 51 (1995) 13023-13032. [86] J. K. Burdett, “Electronic control of the geometry of rutile and related structures,” Inorg. Chem., 24 (1985) 2244-2253. [87] A. Fahmi, C. Minot, B. Silvi, and M. Causá, “Theoretical analysis of the structures of titanium dioxide crystals,” Phys. Rev. B, 47 (1993) 11717-11724. [88] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, Jr., and J. V. Smith, “Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K,” J. Am. Chem. Soc., 109 (1987) 3639-3646. [89] H. Zhang and J. F. Banfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles,” Am. Mineral., 84 (1999) 528-535. [90] A. Fujishima, K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications, BKC, Tokyo (1999). [91] N. A. Dubrovinskaia, L. S. Dubrovinsky, R. Ahuja, V. B. Prokopenko, V. Dmitriev, H. -P. Weber, J. M. Osorio-Guillen, and B. Johansson, “Experimental and theoretical identification of a new high-pressure TiO2 polymorph,” Phys. Rev. Lett., 87 (2001) 275501. [92] J. M. Léger, J. Haines, A. Atouf, and P. Tomaszewski, “In high pressure science and technology,” edited by S. C. Schmidt, J. W. Shaner, G. A. Samara, and M. Ross, American Institute of Physics, New York, (1994) 363. [93] J. S. Olsen, L. Gerward, and J. Z. Jiang, “On the rutile/α-PbO2-type phase boundary of TiO2,” J. Phys. Chem. Solids, 60 (1999) 229-233. [94] J. K. Dewhurst and J. E. Lowther, “High-pressure structural phases of titanium dioxide,” Phys. Rev. B, 54 (1996) R3673-R3675. [95] H. Sato, S. Endo, M. Sugiyama, T. Kikegawa, O. Shimomura, and K. Kusaba, “Baddeleyite-type high-pressure phase of TiO2,” Science, 251 (1991) 786-788. [96] A. Mills and S. L. Hunte, “An overview of semiconductor photocatalysis,” J. Photochem. Photobiol. A, 108 (1997) 1-35. [97] A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobio. C, 1 (2000) 1-21. [98] D. A. Tryk, A. Fujishima, and K. Honda, “Recent topics in photoelectrochemistry: achievements and future prospects,” Electrochimica Acta, 45 (2000) 2363-2376. [99] M. Grätzel, “Photoelectrochemical cells,” Nature, 414 (2001) 338-344. [100] K. Hashimoto, H. Irie, and A. Fujishima, “TiO2 photocatalysis: a historical overview and future prospects,” Jpn. J. Appl. Phys., 44 (2005) 8269-8285. [101] S. S. Block, V. P. Seng, and D. W. Goswami, “Chemically enhanced sunlight for killing bacteria,” J. Sol. Energy Eng., 119 (1997) 85-92. [102] J. C. Ireland, P. Klostermann, E. W. Rice, and R. M. Clark, “Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation,” Appl. Environ. Microbiol., 59 (1993) 1668-1670. [103] J. C. Sjogren and R. A. Sierka, “Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis,” Appl. Enuiron. Microbiol., 60 (1994) 344-347. [104] R. Cai, K. Hashimoto, Y. Kubota, and A. Fujishima, “Increment of photocatalytic killing of cancer cells using TiO2 with the aid of superoxide dismutase,” Chem. Lett., 21 (1992) 427-430. [105] M. Grätzel, “Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light,” Acc. Chem. Res., 14 (1981) 376-384. [106] K. Kalyanasundaram, E. Borgarello, D. Duonghong, and M. Grätzel, “Cleavage of water by visible-light irradiation of colloidal CdS solutions; Inhibition of photocorrosion by RuO2,” Angew. Chem. Int. Ed. Engl., 20 (1981) 987-988. [107] E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, and M. Grätzel, “Photochemical cleavage of water by photocatalysis,” Nature, 289 (1981) 158-160. [108] A. Wold, “Photocatalytic properties of TiO2,” Chem. Mater., 5 (1993) 280-283. [109] H. Gerischer and A. Heller, “Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aerated water,” J. Electrochem. Soc., 139 (1992) 113-118. [110] N. B. Jackson, C. M. Wang, Z. Luo, J. Schwitzgebel, J. G. Ekerdt, J. R. Brock, and A. Heller, “Attachment of TiO2 powders to hollow glass microbeads: activity of the TiO2-coated beads in the photoassisted oxidation of ethanol to acetaldehyde,” J. Electrochem. Soc., 138 (1991) 3660-3664. [111] M. Nair, Z. Luo, and A. Heller, “Rates of photocatalytic oxidation of crude oil on salt water on buoyant, cenosphere-attached titanium dioxide,” Ind. Eng. Chem. Res., 32 (1993) 2318-2323. [112] A. Fernández, G. Lassaletta, V. M. Jiménez, A. Justo, A. R. González-Elipe, J. -M. Herrmann, H. Tahiri, and Y. Ait-Ichou, “Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification,” Appl. Catal. B: Environ., 7 (1995) 49-63. [113] J. Peral, X. Domènech, and D. F. Ollis, “Heterogeneous photocatalysis for purification, decontamination and deodorization of air,” J. Chem. Technol. Biotechnol., 70 (1997) 117-140. [114] S. -J. Tsai and S. Cheng, “Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants,” Catal. Today, 33 (1997) 227-237. [115] A. Sclafani, L. Palmisano, and M. Schiavello, “Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion,” J. Phys. Chem., 94 (1990) 829-832. [116] Y. Nosaka and M. A. Fox, “Kinetics for electron transfer from laser-pulse-irradiated colloidal semiconductors to adsorbed methylviologen. Dependence of the quantum yield on incident pulse width,” J. Phys. Chem., 92 (1988) 1893-1897. [117] N. Serpone and E. Pelizzetti, “Photocatalysis; Fundamentals and Applications,” Wiley & Sons, New York, Brisbane, 1989. [118] H. Kato, K. Asakura, and A. Kudo, “Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure,” J. Am. Chem. Soc., 125 (2003) 3082-3089. [119] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, and K. Domen, “Photocatalyst releasing hydrogen from water,” Nature, 440 (2006) 295-295. [120] S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today, 93-95 (2004) 877-884. [121] A. Sclafani, M. -N. Mozzanega, and P. Pichat, “Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol,” J. Photochem. Photobiol. A: Chem., 59 (1991) 181-189. [122] K. Zakrzewska and M. Radecka, “TiO2-SnO2 system for gas sensing-Photodegradation of organic contaminants,” Thin Solid Films, 515 (2007) 8332-8338. [123] P. V. Kamat and M. A. Fox, “Photosensitization of TiO2 colloids by Erythrosin B in acetonitrile,” Chem. Phys. Lett., 102 (1983) 379-384. [124] B. Patrick and P. V. Kamat, “Photosensitization of large-bandgap semiconductors. Charge injection from triplet excited thionine into ZnO colloids,” J. Phys. Chem., 96 (1992) 1432-1428. [125] N. Vlachopoulos, P. Liska, J. Augustynski, and M. Crätzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline,” J. Am. Chem. Soc., 110 (1988) 1216-1220. [126] J. Desilvestro, M. Grätzel, L. Kavan, and J. Moser, “Highly efficient sensitization of titanium dioxide,” J. Am. Chem. Soc., 107 (1985) 2988-2990. [127] H. Yamashita, M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh, and N. Iwamoto, “Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water,” J. Phys. Chem. B, 102 (1998) 10707-10711. [128] Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, and S. Cai, “Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes,” Thin Solid Films, 349 (1999) 120-125. [129] A. Hagfeldt and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems,” Chem. Rev., 95 (1995) 49-68. [130] N. Bao, L. Shen, T. Takata, and K. Domen, “Recent development of visible-light-driven photocatalysts for water splitting,” Sol. Energy Mater. Sol. Cells, in press. [131] A. Kudo, H. Kato, and I. Tsuji, “Strategies for the development of visible-light-driven photocatalysts for water splitting,” Chem. Lett., 33 (2004) 1534-1539. [132] D. F. Ollis, C. -Y. Hsiao, L. Budiman, and C. -L. Lee, “Heterogeneous photoassisted catalysis: conversions of perchloroethylene, dichloroethane, chloroacetic acids, and chlorobenzenes,” J. Catal., 88 (1984) 89-96. [133] R. W. Matthews, “Photocatalytic oxidation of chlorobenzene in aqueous suspensions of titanium dioxide,” J. Catal., 97 (1986) 565-568. [134] R. B. Draper and M. A. Fox, “Titanium dioxide photosensitized reactions studied by diffuse reflectance flash photolysis in aqueous suspensions of TiO2 powder,” Langmuir, 6 (1990) 1369-1402. [135] C. S. Turchi and D. F. Ollis, “Mixed reactant photocatalysis: intermediates and mutual rate inhibition,” J. Catal., 119 (1989) 483-496. [136] K. -I. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, “Generation and deactivation processes of superoxide formed on TiO2 film illuminated by very weak UV light in air or water,” J. Phys. Chem. B, 104 (2000) 4934-4938. [137] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. -M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water,” Appl. Catal. B: Environ., 31 (2001) 145-157. [138] R. W. Matthews, “Photocatalytic oxidation and adsorption of methylene blue on thin films of near-ultraviolet-illuminated TiO2,” J. Chem. Soc., Faraday Trans. 1, 85 (1989) 1291-1302. [139] K. Bourikas, T. Hiemstra, and W. H. Van Riemsdijk, “Ion pair formation and primary charging behaviour of titanium oxide (Anatase and Rutile),” Langmuir, 17 (2001) 749-756. [140] A. Mills and J. Wang, “Photobleaching of methylene blue sensitized by TiO2: an ambiguous system?,” J. Photochem. Photobiol. A: Chem., 127 (1999) 123-134. [141] T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, and N. Serpone, “Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation,” J. Photochem. Photobiol. A: Chem., 140 (2001) 163-172. [142] M. Fox, Optical properties of solids, Oxford university press, 2001. [143] J. Tauc, R. Grigorovic, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi, 15(2) (1966) 627-637. [144] J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Mater. Res. Bull., 5 (1970) 721-730. [145] F. M. Liu, T. M. Wang, J. Q. Li, C. Wang, S. K. Zheng, and M. Duan, “Structural, optical and magnetic properties of a Mn thin film sandwiched between TiO2 films prepared by magnetron sputtering,” J. Magn. Magn. Mater., 251 (2002) 245-250. [146] B. Karunagaran, K. Kim, D. Mangalaraj, J. Yi, and S. Velumani, “Structural, optical and Raman scattering studies on DC magnetron sputtered titanium dioxide thin films,” Sol. Energy Mater. Sol. Cells, 88 (2005) 199-208. [147] P. S. Patil, S. H. Mujawar, A. I. Inamdar, P. S. Shinde, H. P. Deshmukh, and S. B. Sadale, “Structural, electrical and optical properties of TiO2 doped WO3 thin films,” Appl. Surf. Sci., 252 (2005) 1643-1650. [148] X-Z. Ding and X-H. Liu, “Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders,” J. Mater. Res., 13(9) (1998) 2556-2559. [149] Y. Hou, X. -H. Xu, H. Wang, M. Wang, and S.-X. Shang, “Bi3.25La0.75Ti3O12 thin films prepared on Si (100) by metalorganic decomposition method,” Appl. Phys. Lett., 78(12) (2001) 1733-1735. [150] D. Chen and A. K. Ray, “Photodegradation kinetics of 4-nitrophenol in TiO2 suspension,” War. Res., 32 (1998) 3223-3234. [151] F. S. Shieu, L. H. Cheng, M. H. Shiao, and S. H. Lin, “Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel,” Thin Solid Films, 311 (1997) 138-145. [152] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, 1995. [153] T. Choudhury, S. O. Saied, J. L. Sullivan, and A. M. Abbot, “Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment,” J. Phys. D, 22 (1989) 1185-1195. [154] Joint Committee on Powder Diffraction Standard, International Center for Diffraction Data, PDF 21-1276. [155] Joint Committee on Powder Diffraction Standard, International Center for Diffraction Data, PDF 21-1272. [156] M. Lazzeri, A. Vittadini, and A. Selloni, “Strucutre and energetics of stoichiometric TiO2 anatase surfaces,” Phys. Rev. B, 63 (2001) 155409. [157] M. Lazzeri, A. Vittadini, and A. Selloni, “Erratum: structure and energetics of stoichiometric TiO2 anatase surfaces,” Phys. Rev. B, 65 (2002) 119901. [158] D. Guerin and S. Ismat Shah, “Reactive-sputtering of titanium oxide thin films,” J. Vac. Sci. Technol. A, 15(3) (1997) 712-715. [159] M. S. Tsai, S. C. Sun, and T. Y. Tseng, “Effect of oxygen to argon ratio on properties of (Ba,Sr)TiO3 thin films prepared by radio-frequency magnetron sputtering,” J. Appl. Phys., 82(7) (1997) 3482-3487. [160] L. -J. Meng, M. Andritschky, and M. P. dos Santos, “The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films,” Thin Solid Films, 223 (1993) 242-247. [161] M. Joseph, H. Tabata, H. Saeki, K. Ueda, and T. Kawai, “Fabrication of the low-resistive p-type ZnO by codoping method,” Physica B, 302-303 (2001) 140-148. [162] K. Okimura, A. Shibata, N. Maeda, K. Tachibana, Y. Noguchi, and K. Tsuchida, “Preparation of rutile TiO2 films by rf magnetron sputtering,” Jpn. J. Appl. Phys., 34 (1995) 4950-4955. [163] M. H. Suhail, G. Mohan Rao, and S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys., 71(3) (1992) 1421-1427. [164] S. H. Kim, Y. L. Choi, Y. S. Song, D. Y. Lee, and S. J. Lee, “Influence of sputtering parameters on microstructure and morphology of TiO2 thin films,” Mater. Lett., 57 (2002) 343-348. [165] H. Lin, S. Kumon, H. Kozuka, and T. Yoko, “Electrical properties of sol-gel-derived transparent titania films doped with ruthenium and tantalum,” Thin Solid Films, 315 (1998) 266-272. [166] A. S. Barnard and P. Zapol, “Effects of particle morphology and surface hydrogenation on the phase stability of TiO2,” Phys. Rev. B, 70 (2004) 235403. [167] R. Dannenberg and P. Greene, “Reactive sputter deposition of titanium dioxide,” Thin Solid Films, 360 (2000) 122-127. [168] J. -Y. Zhang, I. W. Boyd, B. J. O'Sullivan, P. K. Hurley, P. V. Kelly, and J. -P. Sénateur, “Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy,” J. Non-Cryst. Solids, 303 (2002) 134-138. [169] T. Yoko, A. Yuasa, K. Kamiya, and S. Sakka, “Sol-gel-derived TiO2 film semiconductor electrode for photocleavage of water,” J. Electrochem. Soc., 138 (1991) 2279-2285. [170] M. G. Krishna, K. N. Rao, and S. Mohan, “Properties of ion assisted deposited titania films,” J. Appl. Phys., 73 (1993) 434-438. [171] A. Aoki and G. Nogami, “Fabrication of anatase thin films from peroxo-polytitanic acid by spray pyrolysis,” J. Electrochem. Soc., 143 (1996) L191-L193. [172] M. Murakami, Y. Matsumoto, K. Nakajima, T. Makino, Y. Segawa, T. Chikyow, P. Ahmet, M. Kawasaki, and H. Koinuma, “Anatase TiO2 thin films grown on lattice-matched LaAlO3 substrate by laser molecular-beam epitaxy,” Appl. Phys. Lett., 78 (2001) 2664-2666. [173] B. S. Richards, N. T. P. Huong, and A. Crosky, “Highly porous nanocluster TiO2 films deposited using APCVD in an excess of water vapor,” J. Electrochem. Soc., 152 (2005) F71-F74. [174] S. Ben Amor, G. Baud, J. P. Besse, and M. Jacquet, “Structural and optical properties of sputtered Titania films,” Mater. Sci. Eng. B, 47 (1997) 110-118. [175] M. Takeuchi, “Photoconductive properties of sputtered TiO2 films,” Phys. Stat. Solid (a), 55 (1979) 653-659. [176] Y. J. Yun, J. S. Chung, S. Kim, S. H. Hahn, and E. J. Kim, “Low-temperature coating of sol-gel anatase thin films,” Mater. Lett., 58 (2004) 3703-3706. [177] D. Mardare, M. Tasca, M. Delibas, and G. I. Rusu, “On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films,” Appl. Surf. Sci., 156 (2000) 200-206. [178] A. Caballero, D. Leinen, A. Fernández, A. Justo, J. P. Espinós, and A. R. González-Elipe, “Contribution of the x-ray absorption spectroscopy to study TiO2 thin films prepared by ion beam induced chemical vapor deposition,” J. Appl. Phys., 77 (1995) 591-597. [179] F. Zhang, Z. Zheng, Y. Chen, D Liu, and X. Liu, “Study on the effect of ion beam bombardment during deposition on preferred orientation in rutile-type titanium dioxide films,” J. Appl. Phys., 83 (1998) 4101-4105. [180] W. Shindo and T. Ohmi, “Ion energy, io
本研究採用直流(dc)濺鍍法進行沈積二氧化鈦(TiO2)薄膜於矽晶片與玻璃基板上,藉由控制製程參數以得到光觸媒結晶相(Anatase)。搭配射頻(rf)濺鍍法將錫及鈮等金屬與TiO2做混合鍍膜沈積於玻璃基板上,並做熱處理後微結構與性質的探討。以低掠角X-光繞射分析儀(GIXD)、場發射掃描式電子顯微鏡(FE-SEM)、穿透式電子顯微鏡(TEM)和能量散佈能譜儀(EDS)、示差熱及熱重量分析儀(DTA/TG)、原子力顯微鏡(AFM)、分光光譜儀(UV-VIS spectrophotometry)、橢圓偏光儀(Ellipsometry)、化學分析電子儀(XPS)探討不同沉積參數及摻雜不同金屬量的TiO2薄膜微結構、表面形貌、成份、光學性質與光催化變化情況。
進一步探討在最佳參數下沉積之TiO2薄膜摻雜不同金屬含量對其微結構、光學性質與光觸媒活性的影響。所有剛沈積在玻璃基板上的TiO2薄膜都是非晶質結構,從XPS分析得知TiO2中的錫含量在rf功率100及200瓦是6.65和16.4 at.%而鈮含量在rf功率200, 300及400瓦是1.98, 3.56和4.9 at.% 。從GIXD與TEM觀察得知,摻雜鈮的TiO2薄膜經過退火523 K後就有多晶相出現,相對於未摻雜的TiO2需退火至723 K,而摻雜錫的TiO2薄膜經過退火673 K後具有非晶與結晶兩相共存的結構。熱處理所引起表面形貌的改變以FE-SEM觀察得知,光學性質由分光光譜儀量測得到摻雜的TiO2 薄膜其穿透率均高於85%且在可見光區域有一定的吸收量,而能隙隨著金屬摻雜量變大。在可見光照射下,所有摻雜鈮的TiO2薄膜其光觸媒活性比未摻雜及摻雜錫的TiO2薄膜來得好,尤其是在rf功率400 W摻雜鈮進入TiO2薄膜並經由退火673 K後具有最佳的光觸媒性能。

Titanium dioxide (TiO2) thin films were deposited on Si wafer and glass substrates by direct current (dc) magnetron sputtering, by which the photocatalytic phase, anatase, was obtained under the optimum deposition conditions of O2/(O2+Ar) flow ratios and substrate biases. TiO2 thin films doped with Sn or Nb were prepared on glass substrates by dc/rf (radio frequency) magnetron co-sputtering, in which dc and rf were utilized for Ti and Sn or Nb targets, respectively, and the samples were post-annealed at temperatures ranging from 473 to 773 K for 1 h in ambient air. Microstructure, surface morphology, chemistry, and optical properties of the un-doped, Sn-doped, and Nb-doped TiO2 films were characterized in details by glancing incidence X-ray diffraction (GIXD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) combined with energy dispersive spectroscopy (EDS), differential thermal analysis/thermogravimetry (DTA/TG), atomic force microscopy (AFM), UV/visable spectrophotometry, ellipsometry, and X-ray photoelectron spectroscopy (XPS). In addition, the photocatalytic activity was evaluated by measurement of the degeneration of methylene blue under UV/visible irradiation.
The analytical results of GIXD show that the anatase phase is the dominant phase at an O2/(O2+Ar) flow ratio of over 40 %, whereas the films exhibit the rutile phase dispersed in amorphous matrix at an O2/(O2+Ar) flow ratio of 20 %. Microstructure and optical properties of the TiO2 films are dependent closely upon the rf power applied to the substrates as a bias. The anatase phase with columnar structure was obtained for the films prepared at rf powers of 0 and 5 W; whereas the films exhibit a rutile phase with equi-axial crystals at rf powers of 15 and 25 W. The rf-bias-assisted TiO2 films have a smoother surface than that without rf bias, and the absorbance edges shift to long wavelengths. The TiO2 films with a rutile phase have a higher refractive index, whereas better photocatalytical properties were observed for the films having anatase phase.
TiO2 films with various Sn or Nb doping contents were investigated on the microstructure, optical properties, and photocatalytic activities. All the as-deposited TiO2 films on glass substrate were amorphous. The concentration of Sn in rf powers of 100 and 200 W and Nb in rf powers of 200, 300, and 400 W were 6.65 and 16.4 at.% for Sn and 1.98, 3.56, and 4.9 at.% for Nb, respectively, by X-ray photoelectron spectroscopy. GIXD revealed a polycrystalline phase for the Nb-doped films post-annealed at temperature 523 K, in contrast to the un-doped one that has to be annealed at temperature 723 K, indicating that Nb dopant can enhance the crystallization of amorphous TiO2. Furthermore, the Nb-doped film post-annealed at 673 K was found to have an anatase-dominanted phase with a fine grain microstructure, while the Sn-doped film post-annealed at 673 K was found to have a coexistence of anatase/rutile duplex and amorphous structure, as observed by using TEM. Heat treatment also induces a change in the surface morphology of the TiO2 films examined by FE-SEM. The optical properties of the TiO2 films were characterized by UV/visible spectrophotometry. The average transmittance of the Sn-doped and Nb-doped films is higher than 85%. Absorption zone in visible regime and optical band gap of the Sn-doped or Nb-doped TiO2 films increase with the doping contents. Under visible light irradiation, all the Nb-doped TiO2 films exhibit better photocatalytic activity than that of un-doped and Sn-doped ones. Among them, the Nb-doped TiO2 film with rf power of 400 W post-annealed at temperature 673 K shows the best photocatalytic performance.
其他識別: U0005-0608200716024200
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.