Please use this identifier to cite or link to this item:
標題: Effects of thickness and size of Ni deposition on the formation of Ni silicide by AFM mechanical lithography
作者: 曾俊翔
Tseng, Chun-Hsiang
關鍵字: nanowires;奈米線
出版社: 材料科學與工程學系所
引用: 1. L. Malmqvist, A. L. Bogdanov, L. Montelius, and H. M. Hertz, “Nanometer table-top proximity x-ray lithography with liquid-target laser-plasma source”, J. Vac. Sci. Technol. B 15, 814 (1997). 2. G. Simon, A. M. Haghiri-Gosnet, J. Bourneix, D. Decanini, Y. Chen, F. Rousseaux, H. Launois, and B. Vidal, “Sub-20 nm x-ray nanolithography using conventional mask technologies on monochromatized synchrotron radiation”, J. Vac. Sci. Technol. B 15, 2489 (1997). 3. H. Watanabe, K. Marumoto, H. Sumitani, H. Yabe, K. Kise, K. Itoga, and S. Aya, “50nm pattern printing by narrowband proximity x-ray lithography”, Jpn. J. Appl. Phys. 41, 7550 (2002). 4. F. Robert, “Optical lithography goes to extremes—and beyond ” , Science 293, 785 (2001). 5. H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey,“Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography”, Appl. Phys. Lett. 75, 2328 (1999). 6. T. Haga, H. Kinoshita, K. Hamamoto, S. Takada, N. Kazui, S. Kakunai, H. Tsubakino, and T. Watanabe, “Evaluation of finished extreme ultraviolet lithography (EUVL) masks using a EUV microscope”, Jpn. J. Appl. Phys. 42, 3771 (2003). 7. V. N. Golovkina, P. F. Nealey, F. Cerrina, J. W. Taylor, H. H. Solak, C. David, and J. Gobrecht,“Exploring the ultimate resolution of positive-tone chemically amplified resists: 26 nm dense lines using extreme ultraviolet interference lithography”, J. Vac. Sci. Technol. B 22, 99 (2004). 8. H. Kinoshita, T. Haga, K. Hamamoto, S. Takada, N. Kazui, S. Kakunai, H. Tsubakino, T. Shoki, M. Endo, and T. Watanabe, “Actinic mask metrology for extreme ultraviolet lithography”, J. Vac. Sci. Technol. B 22, 264 (2004). 9. S. Kawata, N. Katakura, S. Takahashi, and K. Uchikawa,“Stencil reticle development for electron beam projection system ”, J. Vac. Sci. Technol. B 17, 2864 (1999). 10. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications”, Appl. Surf. Sci. 164, 111 (2000). 11. T. H. P. Chang , M. Mankos, K. Y. Lee, and L. P. Muray,“Multiple electron-beam lithography”, Microelec. Eng. 57-58,117 (2001). 12. Y. Sohda , H. Ohta , F. Murai , J. Yamamoto , H. Kawano , H. Satoh, and H. Itoh,“Recent progress in cell-projection electron-beam lithography”, Microelec. Eng. 67-68, 78 (2003). 13.J. H. Hsu, C.Y. Lin, and H. N. Lin, “Fabrication of metallic nanostructures bt atomic force microscopy nanomachining and lift-off process”, J. Vac. Sci. Technol. B 22, 2768 (2004). 14. Y. J. Chen, J. H. Hsu, and H. N. Lin,“Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process”, Nanotechnology 16, 1112(2005). 15. J. M. Chen, S. W. Liao, and Y. C. Tsai,“Electrochemical synthesis of polypyrrole within PMMA nanochannels produced by AFM mechanical lithography”, Synthetic Metals 155, 11(2005). 16. C. Martin, G. Rius, X. Borrise, and F. Perez-Murano,“Nanolithography on thin layers of PMMA using atomic force microscopy”, Nanotechnology 16, 1016 (2005). 17. T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, and L. Ley, “Nanometer-scale field-induced oxidation of Si(111):H by a conducting-probe scanning force microscope : Doping dependence and kinetics”, Appl. Phys. Lett. 67, 3144 (1995). 18. A. E. Gordon, R. T. Fayfield, D. D. Litfin, and T. K. Higman, “Mechanisms of surface anodization produced by scanning probe microscopes”, J. Vac. Sci. Technol. B 13, 2805 (1995). 19. I. F. Cuesta, X. Borrise, and F. P. Murano, “Atomic force microscopy local oxidation of silicon nitride thin films for mask fabrication”, Nanotechnology 16, 2731 (2005). 20. J. Tersoff and R. M. Tromp, “Shape transition in growth of strained islands : spontaneous formation of quantum wires”, Phys. Rev. Lett. 70, 2782 (1993). 21. S. H. Brongersma, M. R. Castell, D. D. Perovic, and M. Zinke-Allmang, “Stress-induced shape transition of CoSi2 clusters on Si(100)”, Phys. Rev. Lett. 80, 3795 (1998). 22. K. Sekar, G. Kuri, P. V. Satyam, B. Sundaravel, D. P. Mahapatra, and B. N. Dev, “Shape transition in the epitaxial growth of gold silicide in Au thin films on Si(111)”, Phys. Rev. B 51, 14330 (1995). 23. D. J. Smith, P. A. Bennett, “Endotaxial silicide nanowires”, Phys. Rev. Lett. 93, 256102 (2004). 24. S. Y. Chen, L. J. Chen, S. D. Tzeng, and S. Gwo, “Epitaxial growth of NiSi2 on (001)Si inside nanoscale contact holes prepared by atomic force microscope tip-induced local oxidation of the thin Si3N4 layer”, J. Vac. Sci. Technol. B 23, 1905 (2005). 25. S. Y. Chen and L. J. Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si”, Appl. Phys. Lett. 87, 253111 (2005). 26. O. Chamirian, J.A. Kittl , A. Lauwers , O. Richard, M. van Dal, and K. Maex, “T hickness scaling issues of Ni silicide”, Microelectron. Eng. 70, 201 (2003). 27. F. Deng, R. A. Johnson, P. M. Asbeck, S. S. Lau,W. B. Dubbelday, T. Hsiao, and J. Woo, “Salicidation process using NiSi and its device application”, J. Appl. Phys. 81, 8047 (1997). 28. S. Y. Chen and L. J. Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si”, Appl. Phys. Lett. 87, 253111 (2005).
矽基板上薄膜厚度對鎳矽化物生成之影響,研究結果顯示:鎳膜沉積厚度較薄會促進NiSi2相提早在低溫生成;而當鎳膜厚5 nm,經700℃ RTA退火後,鎳矽化物晶粒邊緣平行矽〈110〉與〈100〉方向;當鎳膜厚10 nm,經300、400℃RTA退火後,生成NiSi且磊晶成長於矽基板。
利用AFM微影製作鎳矽化物奈米線方面:在鎳奈米線高度為10 nm經400 ℃RTA,可以得到磊晶成長奈米線,而平行Si[110]與[100]方向奈米線其與矽基板界面關係均為Type-A。相較於在矽基板上蒸鍍10 nm鎳膜,其產生NiSi2的溫度提前,顯示尺寸縮小,亦促使NiSi2相提早生成。

Atomic force microscope lithography is a ease method for the fabrication of nanometer-scale structures and adapts to investigate in laboratory. In addition, fine line effect experienced by Ti silicide formation in a very narrow feature and high silicon consumption in CoSi2 formation makes Ni silicide suitable as a candidate in replacing Ti and Co for deep submicro devices and nanodevices. Therefore, in the first part of this study, the effects of thickness of Ni ultrathin film on the formation of Ni silicide were studied. In the second part, the growth of silicide nanowires by AFM mechanical lithography was investigated. We focused on studying the effects of the size and orientation of Ni nanowires on the formation of Ni silicide nanowires.
The results show as follows. The decrease of the thickness of Ni film induces the formation NiSi2 at low annealing temperature. For 5 nm Ni/Si(100) annealing at 500 and 600℃, the NiSi2 thin films with vacancy ordering structure were formed. When the sample annealed at 700℃, the NiSi2 clusters with facets, which are along Si<110> and Si<100> directions, were observed. For 10 nm Ni/Si(100) annealing at 300 and 400℃, the epitaxial NiSi thin film were formed.
The epitaxial NiSi2 nanowires were formed when Ni nanowires with 10 nm height annealed at RTA 400℃. The NiSi2 nanowires, along Si<110> and Si<100> direction, grow into the substrate with a coherent type-A interface. The NiSi2 phase formation temperature in Ni nanowire / Si(100) samples was found to be lowered than that in Ni thin film / Si(100) samples. This indicates that the size reduction of Ni deposition can induce the formation of NiSi2.
其他識別: U0005-1108200714032000
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.