Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10472
標題: Effects of nitrogen/methane ratios and substrate sizes on the properties of carbon coatings on optical fibers prepared by thermal chemical vapor deposition
氮氣/甲烷比及基材尺寸對以熱化學氣相沉積法製備光纖碳鍍層性質之影響
作者: 陳柏羽
Chen, Po-Yu
關鍵字: thermal chemical vapor deposition;熱化學氣相沉積法;optical fiber;nitrogen/methane ratios;substrate sizes;光纖;氮氣/甲烷比;基材尺寸
出版社: 材料科學與工程學系所
引用: [1] D.K. Mynbaev and L.L. Scheiner, “Fiber-optic Communications Technology,” Prentice Hall, New Jersey (2001). [2] 吳順正, 光纖特性與應用, 全華科技圖書公司 (1993). [3] K.C. Kao and G.A. Hockham, Proc. IEE, 133 (1966) 1151. [4] W.A. Gambling, IEEE Journal on Selected Topics in Quantum Electronics, 6 (2000) 1084. [5] Gred Keiser, “Optical Fiber Communication, Second Edition,” McGraw-hill, New York (1991). [6] K.C. Kao, “Optical Fiber System:Technology, Design, and Applications,” McGraw-hill, New York (1982). [7] 吳曜東, 光纖原理與應用, 全華科技圖書公司 (1997). [8] 龔祖德, 光纖通訊技術, 全華科技圖書公司 (1997). [9] P.C.P. Bouten and G. deWith, Journal of Applied Physics, 64 (1988) 3890. [10] A. Iino, M. Kuwabara, and K. Kokura, Journal of Lightwave Technology, 8 (1990) 1675. [11] J.L. (Armstrong) Mrotek, M.J. Matthewson, and C.R. Kurkjian, Journal of Lightwave Technology, 19 (2001) 988. [12] M.J. Matthewson, Proceeding of a Conference held 8-9 September, Boston, Massachusetts, paper CR50 (1993) 3. [13] C.R. Kurkjian, J.T. Krause, and M.J. Mattewson, Journal of Lightwave Technology, 7 (1989) 1360. [14] M.L. Stein, S. Aisenberg, and J. Stevens, “Ion-plasma Deposition of Carbon-indium Hermetic Coating for Optical Fibers,” Optical Fiber Communication Conference, Technical Digest, paper ThM25 (1988). [15] M.M. Bubnov, E.M. Dianov, and S.L. Semjonov, “Maximum Value of Fatigue Parameter n for Hermetically Coated Silica Glass Fibers,” Optical Fiber Communication Conference, Technical Digest, paper ThF2 (1992). [16] K.E. Lu, G.S. Glaesemann, R.V. Vandewoestine, and G. Kar, Journal of Lightwave Technology, 6 (1988) 240. [17] S. Aisenberg, Journal of Vacuum and Science Technology, 2 (1984) 369. [18] J.P. Powers, “An Introduction to Fiber Optic Systems,” Aksen Associates, Boston (1993). [19] T. Nozawa, D. Tanaka, A. Wada, and R. Yamauchi, “Novel Metal-coated Solderable Optical Fibers,” Optical Fiber Communication Conference, Technical Digest, Paper ThF3 (1992). [20] D.R. Biswas, Optical Engineerings, 31 (1992) 1400. [21] D.L. Griscom, K.M. Golant, A.L. Tomashuk, D.V. Pavlov, and Yu. A. Tarabrin, Applied Physics Letter, 69 (1996) 322. [22] V. Hagopian, Nuclear Physics B, 78 (1999) 635. [23] H.S. Seo, U.C. Paek, K. Oh, and C.R. Kurkjian, Journal of Lightwave Technology, 16 (1998) 2355. [24] S.M. Chen, “Electroplated Hermetic Fiber,” Electronic Components and Tech. Conf., 48th, p. 418 (1998). [25] S.L. Semjonov, M.M. Bubnov, N.B. Kurinov, and A.G. Schebuniaev, “Stability of Mechanical Properties of Silica Based Optical Fibers under γ-radiation,” Radecs 97 4th European conf. (1998). [26] B. Sutapun, M. T. Azar, and A. Kazemi, Sensors and Actuators B, 60 (1999) 27. [27] M. Sedlar and L. Pust, Ceramics International, 21 (1995) 21. [28] N. Yoshizawa, H. Tada, and Y. Katsuyama, Journal of Lightwave Technology, 9 (1991) 417. [29] Y. Katsuyama, N. Yoshizawa, and T. Yashiro, Journal of Lightwave Technology, 9 (1991) 1041. [30] D.P. Dowling, K. Donnelly, T.P. O''Brien, A. O''Leary, T. C. Kelly, and W. Neuberger, Diamond and Related Materials, 5 (1996) 492. [31] D. Inniss and J. Krause, “Hermetic Splice over Coating,” Optical Fiber Communication Conference, Technical Digest, paper ThG4 (1991). [32] N. Yoshizawa and Y. Katsuyama, “High-strength Carbon-coated Optical Fiber,” Electronics Letters, 25 (1989) 1429. [33] P.J. Lemaire, K.S. Kranz, K.L. Walker, R.G. Huff, and F.C. Dimarcello, Electronics Letters, 24 (1988) 1323. [34] C.R. Wüthrich, C.A.P. Muller, G.R. Fox, and H.G. Limberger, “High Modulation Efficiency Using Optical Fiber Coated with ZnO Piezoelectric Actuator,” International Conference on Solid-state Sensors and Actuators, Chicago, June (1997). [35] K.H. Kwok and W.K.S. Chiu, Carbon, 41 (2003) 673. [36] Agne’s Oberlin, Carbon, 40 (2002) 7. [37] P.J. Lemaire, Optical Engineering, 30 (1991) 780. [38] Y.S. Ding, W.N. Li, S. Iaconetti, X.F. Shen, J. DiCarlo, F.S. Galasso, S.L. Suib, Surface and Coatings Technology, 200 (2006) 3041. [39] C.A. Taylor, W.K.S. Chiu, Surface and Coatings Technology, 168 (2003) 1. [40] M. Ohring, “Materials science of thin films deposition and structure,” New Jersey (2002). [41] 柯賢文, 表面與薄膜處理技術, 全華科技圖書公司 (2005). [42] M. Volmer, A. Weber, Zeitschrift für Physikalische Chemie, 119 (1926) 277. [43] F.C. Frank, J.H. van der Merwe, Proceedings of the Royal Society A, 198 (1949) 216. [44] I.N. Stranski, L. Krastanow, Sitz. Ber. Akad. Wiss., Math.-naturwiss. Kl. Abt. Ⅱb, 146 (1938) 797. [45] A.H. Lettington, C. Smith, Diamond and Related Materials, 1 (1992) 805. [46] S.T. Shiue, Y.S. Lin, Journal of Applied Physics, 83 (1998) 5719. [47] S.T. Shiue, H.H. Hsiao, T.Y. Shen, H.C. Lin, K.M. Lin, Thin Solid Films, 483 (2005) 140. [48] S.T. Shiue, C.H. Yang, R.S. Chu, T.J. Yang, Thin Solid Films 485 (2005) 169. [49] S.S. Chen, S.T. Shiue, Y.H. Wu, K.J. Cheng, Surface and Coatings Technology, 202 (2007) 798. [50] Z. Hu, K.J. Huttinger, Carbon, 41 (2003) 1501. [51] Y.S. Han, J.Y. Lee, Electrochim. Acta, 48 (2003) 1073. [52] H. Nakayama, K. Takatsuji, S. Moriwaki, K. Murakami, K. Mizoguchi, M. Nakayama, Thin Solid Films, 430 (2003) 309. [53] C.A. Taylor, M.F. Wayne, W.K.S. Chiu, Surface and Coatings Technology, 182 (2004) 131. [54] W.N. Li, Y.S. Ding, S. L. Suib, J.F. DiCarlo, F.S. Galasso, Surface and Coatings Technology, 190 (2005) 366. [55] S.T. Shiue, H.C. Lin, T.Y. Shen, Hao Ouyang, Applied Physics Letters, 86 (2005) 251910. [56] B.D. Cullity, S.R. Stock, “Elements of X-ray Diffraction,” Third ed., Prentice Hall, New Jersey (2001). [57] R.L. Mccreery, “Raman Spectroscopy for Chemical Analysis,” John Wiley&Sons, Canada (2000). [58] F. Tuinstra, and J.L. Koenig, The Journal of Chemical Physical, 53 (1970) 1126. [59] P.C. Eklund, J.M. Holden, and R.A. Jishi, Carbon, 33 (1995) 959. [60] J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Jill Chastain, United States of America (1992). [61] 潘扶民, 材料分析, 中國材料科學會 (2004)。 [62] T. Young, Philos. Philosophical Transactions of the Royal Society Lond B, 9 (1805) 255. [63] H.M. Shang, Y. Wang, S.J. Limmer, T.P. Chou, K. Takahashi, and G. Z. Cao, Thin Solid Films, 472 (2005) 37. [64] A. W. Adamson, A. P. Gast, “Physical Chemistry of Surface,” 6th ed., Wiley, New York (1997). [65] M. Iwaki, Y. Suzuki, A. Nakao, H. Watanabe, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 127/128 (1997) 208. [66] Instruction manual of the Four-point Probe (Model:QT-50). http://www.mems.louisville.edu/lutz/resources/sops/sop45.html [67] X. Bourrat, J. Lavenac, F. Langlais, R. Naslain, Carbon, 39 (2001) 2376. [68] A.C. Ferrari, J. Robertson, Physical Review B, 61 (2000) 14095. [69] L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-paniago, M. A. Pimenta, Applied Physics Letters, 88 (2006) 163106. [70] E. Tomasella, C. Meunier, S. Mikhailov, Surface and Coatings Technology, 141 (2001) 286. [71] M. Lejeune, O. D. Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, M. Benlahsen, Thin Solid Films, 389 (2001) 233. [72] Gwénaëlle Le Dû, Natacha Celini, Faiza Bergaya, Fabienne Poncin-epaillard, Surface and Coatings Technology, 201 (2007) 5815. [73] N. Inagaki, K. Narushima, H. Hashimoto, K. Tamura, Carbon, 45 (2007) 797. [74] P. Mérel, M. Tabbal, M. Chaker, S. Moisa, J. Margot, Applied Surface Science, 136 (1998) 105. [75] S. Adachi, T. Arai, K. Kobayashi, Journal of Applied Physics, 80 (1996) 5422. [76] L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, O. Loginova, Diamond and Related Materials, 11(3-6) (2002) 845. [77] T.H. Fang, W.J. Chang, Applied Surface Science, 220 (2003) 175. [78] J.H. Son, M. Y. Park, S. W. Rhee, Thin Solid Films 335 (1998) 229. [79] S.W. Yuan, “Foundations of Fluid Mechanics,” Prentice-hall, New Jersey (1967). [80] B L.ieberbach, “Conformal Mapping,” Chelsea, New York (1953). [81] A.C. Fischer-Cripps, “Nanoindentation,” Springer-verlag, New York (2002). [82] F.R. Brotzen, Inter. Mater. Rev., 39 (1994) 24. [83] N. Yoshizawa, H. Tada and Y. Katsuyama, J. Lightwave Technol. 9(4) (1991) 417. [84] S.S. Chen, S.T. Shiue, J.K. Cheng, P.Y. Chen, and H.Y. Lin, Optical Engineerings, 47(4) (2008) 045005-1.
摘要: 
This study investigates the effects of N2/(CH4+ N2) ratios and substrate sizes on the properties of carbon coatings on optical fibers prepared by thermal chemical vapor deposition. The surface morphology, microstructure, surface property, and electrical property of carbon coatings were investigated by field emission scanning electron microscopy, optical microscopy, X-ray diffraction spectrometer, Raman scattering spectrometer, X-ray photoelectron spectrometer, atomic force nicroscopy, contact angle meter, 4-point probe method, and nanoindenter. The results indicate that the deposition rate and the electrical resistivity of the carbon coatings decrease as the N2/(CH4+ N2) ratio increase, while the degree of ordering, the mean crystallite size (Lc), in-plane crystallite size (La), and the sp2 carbon atoms of the carbon coating increase. Additionally, based on the water-repellency and low-temperature surface morphology of the carbon coatings, adding nitrogen gas in the precursor gases is good for producing hermetical optical fiber coatings as the carbon coatings thickness greater than 388 nm. Alternatively, the deposition rate of carbon coatings is linearly proportional to the flow rate of precursor gases, so the carbon coating thickness decreases with the substrate size. The number and size of particles on carbon coating surfaces increase with the coating thickness. Therefore, the structural order and mean crystallite size of carbon coatings increase with the substrate size, while the surface roughness and electrical resistivity of carbon films decrease.

本論文主要是以熱化學氣相沉積法製備光纖碳鍍層,探討氮氣/甲烷比及基材尺寸對碳鍍層性質之影響。本實驗利用場發式掃描電子顯微鏡、光學顯微鏡、X光繞射儀、拉曼光譜儀、X光光電子能譜儀、掃描探針顯微鏡、接觸角儀器、四點探針儀與奈米壓痕測試儀來觀察並量測碳鍍層的表面形貌、微觀結構、表面特性、電學性質與機械性質。研究結果發現,隨著氮氣含量百分比增加,碳鍍層的沉積速率及電阻率會下降,而碳鍍層結構有序程度、平均微晶大小 (Lc和La) 以及碳碳雙鍵 (sp2 C=C) 有增加的趨勢。綜合抗水性與耐溫變試驗的結果可得到,當碳鍍層厚度不小於388 nm時,添加氮氣對於熱裂解甲烷沉積碳鍍層有明顯的幫助,包括有更佳的表面形貌、抗水性變好、導電性變好、楊氏模數與硬度增加,且可通過溫變試驗。另一方面,碳鍍層沉積速率會與前驅氣體平均流速呈線性比例關係。隨基材尺寸增加,碳鍍層的厚度會減少,而表面顆粒的數量及大小隨鍍層厚度增加而增加。因此,隨基材尺寸增加,碳鍍層結構有序程度及平均微晶大小 (La) 會增加,而表面粗糙度及電阻率則下降。
URI: http://hdl.handle.net/11455/10472
其他識別: U0005-1308200711004000
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.