Please use this identifier to cite or link to this item:
標題: preparation and electrical-magnetic properties of polyaniline/magnetite/carbon nanotubes composites
作者: 莊宜靜
Chang, Yi-Jing
關鍵字: polyaniline;聚苯胺;magnetic;CNT;氧化鐵;奈米碳管
出版社: 材料科學與工程學系所
引用: 1. D. Chapman, R. J. Warm, A. G. Fitzgerald, A. D. Yoffe, “Spectra and the semiconductivity of the (SN)x polymer”, J. Chem. Soc., Faraday Trans., 1964, 294, 60. 2. H. Shirakawa, E. J. Lousi, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x”, J. Chem. Soc. Chem. Commum., 1977, 16, 578. 3. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Lousi, H. Shirakawa, S. C. Gau, A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene”, Phys. Rev Lett., 1977, 39, 1098. 4. J. C. Huang, “Carbon black filled polymers and polymer blends”, Adv. Polym. Tech., 2002, 21, 299. 5. I. K. Varma, G. Gupta, C. S. Sidhu, “Intrinsically conducting polymer blends”, Macromol. Symp., 2001, 164, 401. 6. A. G. MacDiarmid, “A Novel Role for Organic Polymers (Nobel Lecture)”, Angew. Chem. Int. Ed., 2001, 40, 2581. 7. Z. V. Vardeny, A. J. Heeger, A. Dodabalapur, “Fundamental research needs in organic electronic materials”, Synth. Met., 2005, 148, 1. 8. J. M. Shaw, P. F. Seidler, “Organic electronics: Introduction”, IBM J. Res. Dev., 2001, 45, 3. 9. Y. Wang, N. Herron, K. Moller, T. Bein, “Three-dimensionally confined diluted magnetic semiconductor clusters: zinc manganese sulfide”, Solid State Commun., 1991, 77, 33. 10. G. R. Brubaker, “Corrosion Inhibition and Inhibitors”, Corrosion Chemistry, 1979. 11. C. G. Gebelein, “Progress in Biomedical Polymers”, Biometic. Polymer, New York, 1990. 12. S. Komarneni, “Nanocomposites”, J. Mater. Chem., 1982, 2, 1219. 13. S. Iijima, “Helical microtubules of graphite carbon”, Nature, 1991, 354, 56. 14. 簡逸朋,以多孔矽基板成長奈米碳管之研究,中原大學應用物理研究所碩士學位論文,2002年. 15. 秦治平,導電高分子(聚(鄰-胺基苯甲基醚)、聚咇咯)/蒙脫土奈米複合材料之合成與性質研究,中原大學化學系碩士學位論文,2002年. 16. L. Bao, J. S. Jiang, “Evolution of microstructure and phase of Fe3O4 in system of Fe3O4–polyaniline during high-energy ball milling”, Physica B, 2005, 367, 182. 17. X. Lu, Y. Yu, L. Chen, H. Mao, H. Gao, J. Wang, W. Zhang, Y. Wei, “Aniline dimer–COOH assisted preparation of well-dispersed polyaniline–Fe3O4 nanoparticles”, Nanotechnology, 2005, 16 ,1660. 18. G. Kunming, T. Jiaoning, L. Junqin, Y. Qinpeng, “ZnO–Fe3O4 composite prepared by sol-gel method with H2 deoxidation”, Solid State Commum., 2006, 139, 259. 19. S. V. Kolotilov, O. Shvets, O. Cador, N. Kasian, V. G. Pavlov, L. Ouahab, V. G. Ilyin, V. V. Pavlishchuk, “Synthesis, structure and magnetic properties of porous magnetic composite, based on MCM-41 molecular sieve with Fe3O4 nanoparticles”, J. Solid State Chem., 2006, 179, 2426. 20. R. K. Gupta, R. A. Singh, “Junction properties of Schottky diode based on composite organic semiconductors: Polyaniline-polystyrene system”, J. Polymer Research, 2004, 11, 269. 21. D. Guo, H. Li, “Well-dispersed multi-walled carbon nanotube/polyaniline composite films”, J. Solid State Electrochem., 2005, 6, 445. 22. 顏湘婕,聚吡咯/氧化鐵/奈米碳管複合材料之製備與其電磁性研究,國立中興大學材料工程學系研究所碩士學位論文,2006年. 23. 宋狄文,單一分佈Fe3O4奈米粒子之合成與磁性質,遠東技術學院機械工程系碩士論文,2005年. 24. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, “Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles”, J. Am. Chem. Soc., 2004, 126, 273. 25. W. W. Yu, J. C. Falkner, C. T. Yavuz, V. L. Colvin, “Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts”, Chem. Commun., 2004, 2306. 26. 林彥文,聚苯胺/奈米碳管導電複合材料之製備與電性研究,國立中興大學材料工程學系碩士學位論文,2004年. 27. H. Letheby, “On the production of a blue substance by the electrolysis of sulphate of aniline”, J. Chem. Soc., 1862, 15, 161. 28. H. Shirakawa, S. Ikeda, “Simultaneous Polymerization and Formation of Polyacetylene Film on the Surface of Concentrated Soluble Ziegler-Type Catalyst Solutio”, Polymer J., 1971, 2, 231. 29. B. Wessling, “Dispersion hypothesis and non-equilibrium thermodynamics: key elements for a materials science of conductive polymers. A key to understanding polymer blends or other multiphase polymer systems”, Synth. Met., 1991, 45, 119. 30. A. G. Green, A. E. Woodhead, “Aniline-black and allied compounds”, J. Chem. Soc. Trans., 1910, 97, 2388. 31. L. Langer, “Unusual properties of the aniline black: Does the superconductivity exist at room temperature?”, Solid state Commun., 1978, 26, 839. 32. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, “Polyaniline: Interconversion of metallic and insulated forms”, Mol. Cryst. Liq. Cryst., 1985, 121, 173. 33. F. Lux, “Properties of electronically conductive polyaniline: A comparison between well-known literature data and some experimental findings”, Polymer Review, 1994, 35, 2915. 34. S. M. Yang, J. H. Chiang, “In situ electron spin resonance studies of substituted polyaniline”, Synth. Met., 1991, 41, 753. 35. M. Wan, “The influence of polymerization method and temperature on the absorption spectra and morphology of polyaniline”, Synth. Met., 1989, 31, 51. 36. Y. Cao, P. Smith, A. J. Hegger, “Counter-ion induced processibility of conducting polyaniline”, Synth. Met., 1993, 57, 3514. 37. J. Bacon, R. N. Adams, “Anodic Oxidations of Aromatic Amines.III. Substituted Anilines in Aqueous Media”, J. Am. Chem. Soc., 1968, 90, 6596. 38. S. Wawzonek, T. W. MacIntyre, “Electrolytic Oxidation of Aromatic Amines”, J. Electrochem. Soc., 1967, 114, 1025. 39. S. P. Armes, J. F. Miller, “Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate”, Synth. Met., 1988, 22, 385. 40. M. C. Bernard, V. T. Bich, “Resonant Raman identification of the polaronic organization in PANI”, Synth. Met., 1999, 101, 811. 41. A. G. MacDiarmid, A. J. Epstein, “Secondary doping in polyaniline”, Synth. Met., 1995, 69, 85. 42. F. Wang, J. Tang, L. Wang, H. Zhang, Z. Mo, “Study on the Crystallinity of Polyaniline”, Mol. Cryst. Liq. Cryst., 1988, 160, 175. 43. J. S. Tang, X. B. Jing, B. C. Wang, F. S. Wang, “Infrared spectra of soluble polyaniline”, Synth. Met., 1988, 24, 231. 44. A. G. MacDiarmid, A. J. Epstein, “Polyaniline: Interrelationships Between Molecular Weight, Morphology, Donnan Potential and Conductivity”, Mater. Res. Soc. Symp. Proc., 1992, 247, 565. 45. J. Stejskal, A. Riede, D. Hlavata, J. Prokes, M. Helmstedt, P. Holler, “The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline”, Synth. Met., 1998, 96, 55. 46. G. Yanhou, L. Ji, “Polymerization of aniline in an aqueous system containing organic solvents”, Synth. Met., 1998, 96, 1. 47. 莊萬發,超微粒子理論應用,復漢出版社,1998年. 48. Y. S. Kang, S. Risbud, J. F. Rabolt, P. Stroev, “Synthesis and Characterization of Nanometer-Size Fe3O4 and -Fe2O3 Particles”, Chem. Mater. , 1996, 8, 2209. 49. C. Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao, H. C. Yang, “Ordered Structures in Fe3O4 Kerosene-base Ferrofluids”, J. Appl. Phys., 1997, 81, 4275. 50. G. N. Rao, Y. D. Yao, Y. L. Chen, K. T. Wu, J. W. Chen, “Particle size and magnetic field induced optical properties of magnetic fluid nanoparticles”, Phy. Rev., 2005, E72, 031408. 51. T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. Bin Na, “Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process”, J. Am. Chem. Soc., 2001, 123, 12798. 52. S. Sun, H. Zeng, “Size-Controlled Synthesis of Magnetite Nanoparticles”, J. Am. Chem. Soc., 2002, 124, 8204. 53. H. Zeng, P. M. Rice, S. X. Wang, S. Sun, “Shape-Controlled Synthesis and Shape-Induced Texture of MnFe2O4 Nanoparticles”, J. Am. Chem. Soc., 2004, 126, 11458. 54. C. R. Lin, R. K.Chiang, J. S. Wang, T. W. Sung, “Magnetic properties of monodisperse iron oxide nanoparticles”, J. Appl. Phys., 2006, 99, 08N710. 55. S. Peng, C. Wang, J. Xie, S. Sun, “Synthesis and Stabilization of Monodisperse Fe Nanoparticles”, J. Am. Chem. Soc., 2006, 128, 10676. 56. A. Oberlin, M. Endo, T. Koyama, “ High resolution electron microscope observations of graphitized carbon fibers”, Carbon, 1976, 14, 133. 57. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, “C60-The Third Man”, Nature, 1985, 318, 162. 58. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, “Solid C60:a new form of carbon”, Nature(London), 1990, 347, 354. 59. S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 1993, 363, 603. 60. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, 1993, 363, 605. 61. N. Hamada, S. Swada, A. Oshiyama, “New one-dimensional conductors: Graphitic microtubules”, Phys. Rev. Lett, 1992, 68, 1579. 62. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, “Electronic Structure of Atomically Resolved Carbon Nanotubes”, Nature, 1998, 391, 59. 63. J. Hone, M. Whitney, C. Piskoti, A. Zettl, “Thermal conductivity of single-walled carbon nanotubes”, Phys. Rev. B, 1999, 59, 2514. 64. M. A. Osman, D. Srivastava, “Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes”, Nanotechnology, 2001, 12, 21. 65. E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes”, Science, 1997, 277, 1971. 66. M. F. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load”, Science, 2000, 287, 637. 67. S. Iijima, C. Brabec, A. Maiti, J. Bernholc, “Structural flexibility of carbon nanotubes”, J. Chem. Phys., 1996, 104, 2089. 68. Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, L. M. Gan, “Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells”, Langmuir, 2002, 18, 4054. 69. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, “Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells”, J. Phys. Chem. B, 2003, 107, 6292. 70. G. Girishkumar, K. Vinodgopal, P. V. Kamat, “Carbon Nanostructures in Portable Fuel Cells: Single Wall Carbon Nanotube Electrodes for Methanol Oxidation and Oxygen Reduction”, J. Phys. Chem. B, 2004, 108, 19960. 71. J. Kong, Nathan R. Franklin, C. Zhou, Michael G. Chapline, S. Peng, K. Cho, H. Dai, “Nanotube Molecular Wires as Chemical Sensors”, Science, 2000, 287, 622. 72. S. J. Chung, S. H. Lim, C. H. Lee, J. Jiang, “Novel plasma chemical vapor deposition method of carbon nanotubes at low temperature for field emission display application”, Diamond and Related Materials, 2001, 10, 248. 73. K. Jurewicz, S.Delpeux, V. Bertagna, F. Beguin, E. Frackowiak, “Supercapacitors from nanotubes/polypyrrole composites”, Chem. Phys. Lett., 2001, 347, 36. 74. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy”, Nature, 1996, 384, 147. 75. 李元堯,21世紀的尖端材料-奈米碳管,化工技術第11卷第2期,2003年. 76. 洪昭南、徐逸明、王宏達,奈米碳管結構及特性簡介,化工技術第49卷第1期,2002年. 77. M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotube”, Carbon, 1995, 33, 883. 78. 許瑞庭,聚苯胺/奈米碳管複合材料之合成與性質研究,中原大學化學研究所碩士學位論文,2006年. 79. T. W. Odom, J. L. Huang, P. Kim, “Structure and Electronic Properties of Carbon Nanotubes”, Carbon, 2000, 104, 2794. 80. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, “Electronic structure of chiral graphenetubules”, Appl. Rev. Lett., 1992, 60, 2204. 81. J. C. Charlier, J. P. Issi, “Electronic structure and quantum transport in carbon nanotubes”, Applied Physics A: Materials Science & Processing, 1998, 67, 79. 82. G. Nagy, M. Levy, R. Scarmozzino, “Carbon nanotube tipped atomic force microscopy for measurement of < 100 nm etch morphology on semiconductors”, Appl. Rev. Lett., 1998, 73, 529. 83. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, “Electrical conductivity of individual carbon nanotubes”, Nature, 1996, 382, 54. 84. N. G. Chopra, L. X. Benedict, V. H. Crespi, “Fully Collapsed Carbon Nanotubes”, Nature, 1995, 377, 135. 85. M. R. Falvo, G. J. Clary, R. M. Taylor, “Bending and buckling of carbon nanotubes under large strain”, Nature, 1997, 389, 582. 86. 黃德歡,改變世界的納米技術,瀛舟出版社,2002年 87. M. Terrones, W. K. Hsu, H. W. Kroto, D. R. M. Walton, “Nanotube: A Revolution in Materials Science”, Topics in Current Chemistry, 1998, 199, 1. 88. R. S. Ruoff, D. C. Lorent, “Mechanical and thermal properties of carbon nanotubes”, Phys. Rev, 1995, 33, 925. 89. S. Berber, Y. K. kwon, D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes”, Phys. Rev., 2000, 84, 4613. 90. W. Yi, L. Gu, Zhang, Z. W. Pan, S. S. Xie, “Linear specific heat of carbon nanotubes”, Phys. Rev. B, 1999, 59, 9015. 91. S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund, “Purification of Single Wall Carbon Nanotubes by Microfiltration”, J. Phys. Chem. B, 1997, 101, 8839. 92. S. Bandow, “Radial Thermal Expansion of Purified Multiwall Carbon Nanotubes Measured by X-ray Diffraction”, Jpn. J. Appl. Phys., 1997, 236, L1403. 93. 魏向辰,導電高分子與多層奈米碳管複合材料之研究,國立中央大學化學工程與材料工程研究所碩士學位論文,2007年. 94. S. C. Tsang, Y. K. Chen, M. L. H. Green, “A simple chemical method of opening and filling carbon nanotubes”, Nature, 1994, 372, 159. 95. R. M. Lago, S. C. Tsang, K. L. Lu, Y. K. Chen, M. L. H. Green, “Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups”, J. Chem. Soc. Chem. Commun., 1995, 13, 1355. 96. H. Hiura, T. W. Ebbesen, K. Tanigaki, “Opening and purification of carbon nanotubes in high yields”, Adv. Mater., 1995, 7, 275. 97. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, “Fullerene Pipes”, Science, 1998, 280, 1253. 98. W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M. Rao, Y. P. Sun, “Sonication-assisted functionalization and solubilization of carbon nanotubes”, Nano Lett., 2002, 2, 231. 99. Y. Wang, Z. Iqbal, S. Mitra, “Rapidly Fucntionalized, Water-Dispersed Carbon Nanotubes at High Concentration”, J. Am. Chem. Soc., 2006, 128, 95. 100. F. Pompeo, D. E. Resasco, “Water Solubilization of Single-Walled Carbon Nanotubes by Functionalization with Glucosamine”, Nano Lett., 2002, 2, 369. 101. V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, “Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants”, Nano Letters, 2003, 3, 1379. 102. T. Wang, X. Hu, X. Qu, S. Dong, “Noncovalent Functionalization of Multiwalled Carbon Nanotubes: Application in Hybrid Nanostructures”, J. Phys. Chem. B, 2006, 110, 6631. 103. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, “Solution Properties of Single-Walled Carbon Nanotubes”, Science, 1998, 282, 95. 104. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, “Solvation of fluorinated single wall carbon nanotubes in alcohol solvents”, J. Phys. Chem. B, 1999, 103, 4318. 105. Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley, J. L. Margrave, “Cutting single-wall carbon nanotubes through fluorination”, Nano Lett., 2002, 2, 1009. 106. L. Zhang, M. Wan, Y. Wei, “Polyaniline/TiO2 microspheres prepared by a template-free method”, Synth. Met., 2005, 151, 1. 107. S. Wang, Z. Tan, Y. Li, L. Sun, T. Zhang, “Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites”, Thermochimica Acta, 2005, 441, 191. 108. L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, S. Wu, “Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route”, Sensors and Actuators B: Chemical, 2007, 120, 568. 109. N. Guskos, E. A. Anagnostakis, V. Likodimos, T. Bodziony, J. Typek, M. Maryniak, “Ferromagnetic resonance and ac conductivity of a polymer composite of Fe3O4 and Fe3C nanoparticles dispersed in a graphite matrix”, J. Appl. Phys., 2005, 97, 024304. 110. D. G. Shchukim, I. L. Radtchenko, G. B. Sukhorukov, “Micron-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside”, Mater. Lett., 2003, 57, 1743. 111. M. Wan, W. Zhou, J. Li, “Composite of polyaniline containing iron oxides with nanometer size”, Synth. Met., 1996, 78, 27. 112. M. Wan, J. Li, “Synthesis and electrical-magnetic properties of polyaniline composites”, J. Polym. Sci.: Part A: Polymer Chemistry, 1998, 36, 2799. 113. J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, “Magnetic and conducting Fe3O4-cross-linked polyaniline nanoparticles with core-shell structure”, polymer, 2002, 43, 2179. 114. J. Deng, C. L. He, Y. Peng, J. Wang, X. Long, P. Li, “Magnetic and conductive Fe3O4–polyaniline nanoparticles with core–shell structure”, Synth. Met., 2003, 139, 295. 115. Z. Zhang, M. Wan, “New ultraviolet emissive wide-bandgap semiconductive polymers”, Synth. Met., 2003, 132, 205. 116. M. Wan, J. Fan, “Synthesis and ferromagnetic properties of composites of a water-soluble polyaniline copolymer containing iron oxide”, J. Polym. Sci.: Part A: Polymer Chemistry, 1998, 36, 2749. 117. J. Alam, U. Riaz, S. Ahmad, “Effect of ferrofluid concentration on electrical and magnetic properties of the Fe3O4/PANI nanocomposites”, J. Magnetism and Magnetic Materials, 2007, 314, 93. 118. X. Lu, Y. Yu, L. Chen, H. Mao, H. Gao, “Aniline dimer-COOH assisted preparation of well-dispersed polyaniline-Fe3O4 nanoparticles”, Nanotechnology, 2005, 16, 1660. 119. X. Lu, H. Mao, D. Chao, W. Zhang, Y. Wei, “Ultrasonic synthesis of polyaniline nanotubes containing Fe3O4 nanoparticles”, J. Solid State Chem., 2006, 179, 2609. 120. J. C. Aphesteguy, E. Jacobo, “Synthesis of a soluble polyaniline–ferrite composite: magnetic and electric properties”, J. Mater Sci., 2007, 42, 7062. 121. Q. Xiao, X. Tan, L. Ji, J. Xue, “Preparation and characterization of polyaniline/nano-Fe3O4 composites via a novel Pickering emulsion route”, Synth. Met., 2007, 157, 784. 122. P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, “Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite”, Science, 1994, 265, 1212. 123. M. S. P. Shaffer, A. H. Windle, “Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites”, Adv. Mater., 1999, 11, 937. 124. A. Allaoui, S. Bai, H. M. Cheng, J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite”, Compos. Sci. Technol., 2002, 62, 1993. 125. B. P. Grady, F. Pompeo, R. L. Shambaugh, D. E. Resasco, “Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes”, J. Phys. Chem. B, 2002, 106, 5852. 126. H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, R. H. Friend, “Composites of carbon nanotubes and conjugated polymers for photovoltaic devices”, Adv. Mater., 1999, 11, 1281. 127. E. Kymakis, G. A. J. Amaratunga, “Single-wall carbon nanotube/conjugated polymer photovoltaic devices”, Appl. Phys. Lett., 2002, 80, 112. 128. S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier, “A Composite from Poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics”, Adv. Mater., 1998, 10, 1091. 129. Y. Sun, S. R. Wilson, D. I. Schuster, “High dissolution and strong light emission of carbon nanotubes dissolved in aniline”, J. Am. Chem. Soc., 2001, 123, 5348. 130. M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez, J. M. Benoit, J. Schreiber, O. Chauvet, “Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction”, Chem. Commun., 2001, 16, 1450. 131. X. H. Li, B. Wu, J. E. Huang, J. Zhang, Z. F. Liu, H. L. Li, “Fabrication and chracterization of well dispersed single-walled carbon nanotube/polyaniline composites”, Carbon, 2002, 411, 1645. 132. H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith, L. Echegoyen, D. L. Carroll, S. H. Foulger, J. Ballato, “Carbon nanotube doped polyaniline”, Adv. Mater., 2002, 14, 1480. 133. J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, A. S. C. Chan, “Carbon Nanotube-polyaniline hybrid materials”, European Polymer Journal, 2002, 38, 2497. 134. J. E. Huang, X. H. Li, J. C. Xu, H. L. Li, “Well-dispersed single-walled carbon nanotube/polyaniline composite films”, Carbon, 2003, 41, 2731. 135. X. Zhang, J. Zhang, R. Wang, Z. Liu, “Cationic Surfactant Directed Polyaniline/CNT Nanocables: Synthesis, Characterization, and Enhanced Electrical Properties”, Carbon, 2004, 42, 1455. 136. V. Mottaghitalab, G. M. Spinks, G. G. Wallace, “The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers”, Synth. Met., 2005, 152, 77. 137. R. Sainz, A. M. Benito, M. TMartinez, J. F. Galindo, J. Sotres, AMBaro, “A soluble and highly functional polyaniline–carbon nanotube composite”, Nanotechnology, 2005, 16, S150. 138. T. M. Wu, Y. W. Lin, C. S. Liao, “Preparation and characterization of polyaniline/multi-walled carbon nanotube composites”, Carbon, 2005, 43, 734. 139. T. M. Wu, Y. W. Lin, “Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties”, Polymer, 2006, 47, 3576. 140. V. Mottaghitalab, B. Xi, G. M. Spinks, G. G. Wallace, “Polyaniline fibres containing single walled carbon nanotubes: Enhanced performance artificial muscles”, Synth. Met., 2006, 156, 796. 141. E. N. Konyushenko, J. Stejskal, M. Trchova, J. Hradil, J. Kovarova, “Multi-wall carbon nanotubes coated with polyaniline”, Polymer, 2006, 47, 5715. 142. X. Zhang, W. Song, P. J. F. Harris, G. R. Mitchell, T. T. T. Bui, A. F. Drake, “Chiral polymer-carbon-nanotube composite nanofibers”, Adv. Mater., 2007, 19, 1079. 143. L. Kong, X. Lu, W. Zhang, “Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline composite nanotubes”, J. Solid State Chem., 2008, 181, 628. 144. S. Wang, H. Bao, P. Yang, G. Chen, “Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion”, Analytica Chimica Acta, 2008, 612, 182. 145. M. Klokkenburg, J. Hilhorst, B. H. Erne, “Surface analysis of magnetite nanoparticles in cyclohexane solutions of oleic acid and oleylamine”, Vibrational Spectroscopy, 2007, 43, 243. 146. J. L. Zhang, R. S. Srivastava, R. D. K. Misra, “Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system”, Langmuir, 2007, 23, 6342. 147. X. Liu, M. D. Kaminski, Y. Guan, H. Chen, H. Liu, A. J. Rosengart, “Preparation and characterization of hydrophobic superparamagnetic magnetite gel”, J. Magnetism and Magnetic Materials, 2006, 306, 248. 148. M. E. Jozefowicz, R. Laversanne, H. H. S. Javadi, A. J. Epstein, J. P. Pouget, X. Tang, A. G. MacDiarmid, “Multiple lattice phases and polaron-lattice spinless-defect competition in polyaniline”, Phys. Rev. B, 1989, 39, 12958. 149. K. R. Reddya, K. P. Lee, A. I. Gopalan, “Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: Effect of dopant on the properties”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 320, 49. 150. K. S. Ho, Y. J. Huang, C. W. Kuo, S. W. Lee, T. H. Hsieh, C. N. Chuang, “Effect of aniline-formaldehyde resin on the reduced conjugation length of doped polyaniline: Thermal studies”, J. Applied Polymer Science, 2007, 103, 2120. 151. S. Shreepathi, R. Holze, “Spectroelectrochemistry and Preresonance Raman Spectroscopy of Polyaniline-Dodecylbenzenesulfonic Acid Colloidal Dispersions”, Langmuir, 2006, 22, 5196. 152. S. Ito, K. Murata, S. Teshima, R. Aizawa, Y. Asako, K. Takahashi, B. m. Hoffman, “Simple synthesis of water-soluble conducting polyaniline”, Synth. Met., 1998, 96, 161. 153. C. H. Chen, “Thermal and morphological studies of chemically prepared emeraldine base form polyaniline powder”, J. Applied Polymer Science, 2003, 89, 2142. 154. S. K. Mehta, K. K. Bhasin, R. Chauhan, S. Dham, “Effect of temperature on critical micelle concentration and thermodynamic behavior of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 255, 153. 155. M. Omastov&aacute;, M. Trchov&aacute;, J. K. ov&aacute;, J. Stejskal, “Synthesis and structural study of polypyrroles prepared in the presence of surfactants”, Synth. Met., 2003,138, 447.
本研究以不同的有機金屬前驅物,成功地利用高溫熱裂解法製備出在極性溶劑中具良好分散性且為單一粒徑之6 nm與13 nm Fe3O4奈米顆粒,實驗中使用兩性界面活性劑11-aminoundecanoic acid tetramethylammonium salt對Fe3O4奈米顆粒進行改質,可將疏水性6,13 nm Fe3O4奈米顆粒成功的改質成親水性,以利Fe3O4奈米顆粒於水相溶液中與苯胺單體反應,並製備出兼具導電與導磁特性之PANI/Fe3O4複合物。本實驗進一步結合奈米碳管優異的電性與機械性質,使有效提升PANI/Fe3O4/CNT複合物之電性質。
製備PANI/Fe3O4複合物過程中,添加Fe3O4顆粒,會使Fe3O4顆粒表面吸附苯胺單體,而形成聚苯胺包覆Fe3O4顆粒之圓球狀複合材料。由TEM觀察可得知其形成包覆性良好的PANI/Fe3O4複合材料。FTIR、Raman光譜圖則顯示,添加Fe3O4顆粒,會使原本聚苯胺的特性峰往低波長位移,表示Fe3O4會影響聚苯胺的結構。導電度在0.5 wt% Fe3O4添加量下,因摻雜效應作用,因此複合物有較高的導電度。在磁性量測上,聚合物均為超順特性,且隨著Fe3O4含量上升,飽和磁化量上升。
以不同親水性Fe3O4顆粒含量與3 wt%多壁奈米碳管所製備之PANI/Fe3O4/CNT複合物中,聚苯胺結構包覆住奈米碳管與Fe3O4奈米顆粒而形成針刺狀之管狀複合物結構體,與原本直徑20~40 nm之多壁奈米碳管相比,管徑有明顯增加的情形。由TEM觀察,其形成良好包覆且均一厚度的PANI/Fe3O4/CNT複合物結構。在FTIR、Raman與UV-vis光譜圖同樣顯示,添加Fe3O4顆粒,會使原本聚苯胺的特性峰產生位移。而導電度在0.5 wt% Fe3O4添加量下,均具高導電度,且添加奈米碳管有助於提升複合物之導電度。磁性分析上,聚合物均為超順特性,且隨著Fe3O4含量上升,飽和磁化量上升。

The monodispersed 6 nm and 13 nm Fe3O4 nanoparticles have been successfully prepared through thermal decomposition processs by using the solvent with high-boiling temperature. The fabricated Fe3O4 containing hydrophobic characteristic can be modified by a bipolar molecule, 11-aminoundecanoic acid tetramethylammonium salt, to make the Fe3O4 be water-soluble. In this study, conductive polymer polyaniline (PANI)/ Fe3O4 and PANI/Fe3O4/CNT composites have been synthesiced by chemical oxidative polymerization. The magnetic and electrical propertyes of the fabricated nanocomposites will be discussed.
For PANI/Fe3O4 system, the TEM images show a typical core-shell structure. The results of FTIR, Raman spectrum indicate the composites occurs the slightly blue shift. The electrical conductivity of PANI/Fe3O4 composites containg 0.5 wt% Fe3O4 shows higher conductivity. The magnetic properties of composites are superparamagntic and the saturation magnetization increases as the content of Fe3O4 increases.
For PANI/Fe3O4/CNT system containg 3 wt% CNT, the morphology of composites shows a tubular comfortmation. The results of FTIR, Raman spectrum indicate the composites occurs the slightly blue shift. The electrical conductivity of PANI/Fe3O4/CNT composites containg 0.5 wt% Fe3O4 shows higher conductivity. The magnetic properties of composites are superparamagntic and the saturation magnetization increases as the content of Fe3O4 increases.
其他識別: U0005-2007200723070500
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.