Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10502
標題: Preparation and Diffusion Barrier Property of AlCrTaTiZrRu High-Entropy-Alloy Nitride Films
鋁鉻鉭鈦鋯釕高熵合金氮化物薄膜製備與擴散阻障性質之研究
作者: 王振元
Wang, Chen-Yuan
關鍵字: interconnect material;內連線;diffusion barrier;high entropy alloy;nitride films;擴散阻障層;高熵合金;氮化物
出版社: 材料科學與工程學系所
引用: [1] S.P. Murarka, “Multilevel interconnections for ULSI and GSI era”, Mater. Sci. Eng., R., 19 (1997) 87-151. [2] C.A. Chang, “Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures ”, J. Appl. Phys., 67 (1990) 566-569. [3] L. Stolt, and F.M. D’Heurle, “The formation of Cu3Si marker experiments”, Thin Solid Films, 189 (1990) 269-274. [4] M.H. Tsai, S.C. Sun, C.E. Tsai, S.H. Chuang, and H.T. Chiu, “Comparison of the diffusion barrier properties of chemical vapor deposited TaN and sputtered TaN between Cu and Si”, J. Appl. Phys., 79 (1996) 6032-6938. [5] K.H. Min, K.C. Chun, and K.B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization”, J. Vac. Sci. Technol. B, 14 (1996) 3263-3269. [6] K.C. Park, K.B. Kim, I.J.M.M. Raaijmakers, and K. Ngan, “The effect of density and microstructure on the performance of TiN barrier films in Cu metallization”, J. Appl. Phys., 80 (1996) 5674-5681. [7] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN microstructure on diffusion barrier properties in Cu metallization”, J. Electrochem. Soc., 145 (1998) 2164-2167. [8] H.Y. Cheng, Y.C. Chen, C.M. Lee, R.J. Chung, and T.S. Chin, “Thermal stability and electrical resistivity of SiTaNx heating layer for Phase-Change Memories”, J. Electrochem. Soc., 153 (2006) 685-691. [9] S. Rawal, D.P. Norton, H. Ajmera, T.J. Anderson, and L. McElwee-White, “Properties of Ta–Ge–(O)N as a diffusion barrier for Cu on Si”, Appl. Phys. Lett., 70 (2007) 051913. [10] P. Majumdera, and C. Takoudis, “Reactively Sputtered Mo–V Nitride Thin Films as Ternary Diffusion Barriers for Copper Metallization”, J. Electrochem. Soc., 155 (2008) 703-706. [11] C.W. Chen, J.S. Chen, and J.S. Jeng, “Improvement on the Diffusion Barrier Performance of Reactively Sputtered Ru–N Film by Incorporation of Ta”, J. Electrochem. Soc., 155.(2008) 438-442. [12] P. Majumder, and C.G. Takoudis, “Investigation on the diffusion barrier properties of sputtered Mo/W–N thin films in Cu interconnects” Appl. Phys. Lett., 91 (2007) 162108. [13] P. Majumder, and C. Takoudis, “Thermal stability of Ti/Mo and Ti/MoN nanostructures for barrier applications in.Cu interconnects”, Nanotechnology, 19 (2008) 205202. [14] L.C. Leu, D.P. Norton, L. McElwee-White, and T.J. Anderson, “Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects” , Appl. Phys. Lett., 92 (2008) 111917. [15] C.H. Lai, S.J. Lin, J.W. Yeh, and S.Y. Chang, “Preparation and Characterization of AlCrTaTiZr Multi-element Nitride Coatings”, Surf. Coat. Tech., 201 (2006) 3275-3280. [16] M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, and J.Y. Gan, “Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization”, Appl. Phys. Lett., 92 (2008) 052109. [17] K.T. Nam, A. Datta, S.H. Kim, and K.B. Kim, “Improved diffusion barrier by stuffing the grain boundaries of TiN with a thin Al interlayer for Cu metallization”, Appl. Phys. Lett., 79 (2001) 2549-2551. [18] J.C. Chuang, S.L. Tu, and M.C. Chen, “Sputtered Cr and reactively sputtered CrN serving as barrier layers against Copper diffusion”, J. Electrochem. Soc., 145 (1998) 4290-4296. [19] M.T. Wang, Y.C. Lin, and M.C. Chen, “Barrier properties of very thin Ta and TaN layers against Copper diffusion”, J. Electrochem. Soc., 145 (1998) 2538-2545. [20] M.Y. Kwak, D.H. Shin, T.W. Kang, and K.N. Kim, “Characteristics of TiN barrier layer against Cu diffusion”, Thin Solid Films, 339 (1999) 290-293. [21] M.B. Takeyama, A. Noya, and K. Sakanishi, “Diffusion barrier properties of ZrN films in the Cu/Si contact systems”, J. Vac. Sci. Technol. B, 18 (2000) 1333-1337. [22] J.J. Sniegowski, “Moving the World with Surface Micromachining”, Solid State Technology, 39 (1996) 83-87. [23] 陳力俊,“微電子材料與製程”,中國材料科學學會,2002 年。 [24] S.P. Murarka, and S.W. Hymes, “Copper metallization for ULSL and beyond”, Crit.l Rev. Solid State, 20 (1995) 87-124. [25] R.S. Muller, and T.I. Kamins, “Device Electronics for Integrated Circuits”, 2nd ed., John Wiley & Sons, New York, (1986) p. 1-56. [26] R.C. Weast, CRC Handbook of Chemistry and Physics, The Chemical Rubber Co., 1970. [27] 莊達人,“VLSI 製造技術”,高立出版社,2006 年。 [28] International Technology Roadmap for Semiconductors-2006 Updates, http://www.itrs.net/Links/2006Update/FinalToPost/09_Interconnect2006Update.pdf (lastaccessed on April 10, 2008). [29] A. Noya, and K. Sasaki, “Auger Electron Spectroscopy Study on the Characterization and Stability of the Cu9Al4/TiN/Si System”, Jpn. J. Appl. Phys., 30 (1991) 1760-1763. [30] M. Stavrev, D. Fischer, A. Preub, C. Wenzel, and N. Mattern, “Study of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization”, Microelectron. Eng., 33 (1997) 269-275. [31] T. Oku, E. Kawakami, M. Uecubo, K. Takahiro, S.Yamaguchi, and M. Murakami, “Diffusion barrier property of TaN between Si and Cu”, Appl. Surf. Sci., 99 (1996) 265-272. [32] S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang, “Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals”, J. Electrochem. Soc., 153 (2006) 578-581. [33] Y. Liu, S. Song, D. Mao, H. Ling, and M. Li, “Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si”, Microelectron. Eng., 75 (2004) 309-315. [34] Y. Wang, F. Cao, Y.T. Liu, and M.H. Ding, “Investigation of Zr–Si–N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization”, Appl. Phys. Lett., 92 (2008) 032108. [35] S.Y. Chang, and C.L. Lu, “Thermal Stability and Interface Diffusion Behaviors of Electrolessly Deposited CoWP and Cu Films”, J. Electrochem. Soc., 155 (2008) 234-243. [36] S.T. Lin, and C. Lee, “Characteristics of sputtered Ta–B–N thin films as diffusion barriers between copper and silicon”, Appl. Surf. Sci., 253 (2006) 1215-1221. [37] L.C. Leu, D.P. Norton, L. McElwee-White, and T.J. Anderson, “Properties of reactively sputtered W–B–N thin film as a diffusion barrier for Cu metallization on Si”, Applied Physics A Material Science & Processing , 94 (2009) 691-695. [38] S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang, “Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals”, J. Electrochem. Soc., 153 (2006) 578-581. [39] Y.L. Kuo, C. Lee,T, J.C. Lin, Y.W. Yen, and W.H. Lee, “Evaluation of the thermal stability of reactively sputtered (Ti, Zr)Nx nano-thin films as diffusion barriers between Cu and Silicon”, Thin Solid Films, 484 (2005) 265-271. [40] C.W. Chen, J.S. Chen, and J.S. Jeng, “Improvement on the Diffusion Barrier Performance of Reactively Sputtered Ru–N Film by Incorporation of Ta”, J. Electrochem. Soc., 155 (2008) 438-442. [41] S. Rawal, D.P. Norton, K. Kim, T.J. Anderson, and L. McElwee-White, “Ge/HfNx diffusion barrier for Cu metallization on Si”, Appl. Phys. Lett., 89 (2006) 231914. [42] X.P. Qu, J.J. Tan, M. Zhou, T. Chen, Q. Xie, G.P. Ru, and B.Z. Li, “Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization”, Appl. Phys. Lett., 88 (2006) 151912 . [43] A. Lindsay Greer, Nature, 366 (1993) 303. [44] Handbook Committee, Metals Handbook, Ed. 10, Vol. 3 (Eds: H. Baker), ASM International, Metals Park, OH, 1992. [45] J.W. Yeh, S.K.Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Adv. Eng. Mater., 6 (2004) 299-303. [46] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, in Cohesion in Metals: Transition Metal Alloys (Eds: F.R. de Boer, D.G. Pettifor), Elsevier, New York, 1988, Ch. 1 and 2. [47] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Adv. Eng. Mater., 6 (2004) 299-303. [48] C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang, “Mechanical Performance of AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements”, Metall. Mater. Trans. A, 36 (2005) 1263-1271. [49] 賴加瀚,“Al-Cr-Ta-Ti-Zr-N 多元氮化物薄膜之製備與性質研究”,國立清華大學材料科學工程研究所博士論文,2007 年。 [50] S.Y. Chang, M.K. Chen, and D.A Chen, “Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Copper metallization”, J. Electrochem. Soc., 156 (2009) 37-42. [51] 陳明谷,“鋁鉻鉭鈦鋯多元高熵合金氮化物薄膜製備與擴散阻障性質之研究”,國立中興大學材料科學與工程學系碩士論文,2008 年。 [52] L.K. Elbaum, M. Wittmer, C.Y. Ting, and J.J. Cuomo, “ZrN diffusion barrier in aluminum metallization schemes”, Thin Solid Films, 104 (1983) 81-87. [53] M. Damayanti, T. Sritharan, S.G. Mhaisalkar, and Z.H. Gan, “Effects of dissolved nitrogen in improving barrier properties of ruthenium”, Appl. Phys. Lett., 88 (2006) 044101. [54] 鄭耿豪,“利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜”,國立清華大學材料科學工程研究所碩士論文,2005 年。 [55] L.C.Leu, D.P.Norton, L.McElwee, TJ, Aderson,“Properties of reactively sputtered W-B-N thin film as a diffusion barrier for Cu metallization on Si”, Appl Phys A (2009) 94:691-695 [56] Qi Xie, Yu-Long Jiang, Jan Musschoot, Davy Deduytsche, Christophe Detavernier, Roland L Van Meirhaeghe, Sven Van Den Berghe, Guo-Ping Ru, Bing-Zong Li, Xin-Ping Qu,“Ru thin film grown on TaN by plasma enhanced atomic layer deposition, Thin Solid Films, 517 (2009) 4689-4693 [57] T. N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M. J. Kim, K. H. Chen, C. T. Wu, L. C. Chen,“5nm ruthenium thin film as a directly plateable copper diffusion barrier”, Appl. Phys. Lett., 86, 083104 (2005) [58] Xin-Ping Qu, Jing-Jing Tan, Mi Zhou, Tao Chen, Qi Xie, Guo-Ping Ru, Bing-Zong Li,”Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization”, Appl. Phys. Lett., 88, 151912 (2006) [59] Qi Xie, Xin-Ping Qu, Jing-Jing Tan, Yu-Long Jiang, Mi Zhou, Tao Chen, Cuo-Ping Ru,“Superior thermal stability of Ta/TaN bi-layer structure for copper metallization”, Applied Surface Science, 253, (2006) 1666-1672 [60] Ken-ichi YOSHIMOTO, Satoko SHINKAI, Katsutaka SASAKI, “Application of HfN/Hf Bilayered Film as a Diffusion Barrier for Cu Metallization System of Si Large-Scale Integration”, Jpn. J. Appl. Phys, 39, 2000 1835-1839 [61] Ming-Hung Tsai, Jien-Wei Yen, Jon-Yiew Gan,”Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon”, Thin solid films, 516, 2008 5527-5530 [62] Shou-Yi Chang, Dao-sheng Chen,”10-nm-thick qulnary (AlCrTaTiZr)N film as effective diffusion barrier for copper interconnects at 900℃”, Appl. Phys. Lett., 94, 231909 (2007)
摘要: 
隨著積體電路線寬及線距不斷縮小,具有低電阻率及較佳的抗電遷移能力的銅已被廣泛地應用作為內連線材料;然而,在銅內連線結構中,為了防止銅迅速擴散進入元件內,須在介電層與銅導線間沉積一具高熱穩定性、低電阻係數及良好界面附著性之擴散阻障層。因此,本研究便以射頻磁控濺鍍法沉積鋁鉻鉭鈦鋯釕 (AlCrTaTiZrRu) 六元高熵合金 (High-Entropy Alloy,簡稱 HEA) 及其氮化物 (HEA Nitride,簡稱 HEAN) 薄膜,並探討在各種不同氮流量分率下沉積之高熵合金氮化物薄膜之擴散阻障特性,以期開發出具優越擴散阻障性質之材料。薄膜沉積時同時通入氬氣及氮氣,氮氣流量比設定為 0%、10% 及 30%,分別可得到 HEA、HEAN0.06 及 HEAN0.5薄膜,六種金屬元素之含量則約為等莫耳;所鍍製之擴散阻障層厚度設定為5 nm。經擴散阻障性質分析發現,Si/HEA/Cu、Si/HEAN0.06/Cu 及Si/HEAN0.5/Cu 結構於 800 ℃ 退火後,電阻值仍維持在低值,顯示在此溫度下HEA、HEAN0.06、HEAN0.5仍能有效阻障銅矽之交互擴散;而於 900 ℃ 退火後,開始出現大量之Cu3Si 結晶相,且電阻值急遽上升,顯示此三種薄膜皆已失去其擴散阻障能力。此外,HEA 薄膜因具有較低之電阻率及非晶質之結構,在IC元件製程持續微縮,元件朝向低功率及高傳輸速度目標發展下,具有極佳的發展潛力。

As the line width and spacing of intergrated circuits (ICs) continually decrease, copper has been widely used as an interconnect material because of its lower electrical resistivity and better electromigration resistance. To inhibit rapid copper diffusion in interconnect structures, an effective diffusion barrier layer with high thermal stability, low electrical resistivity and good interface adhesion is demanded. In this study, an AlCrTaTiZrRu senary high-entropy alloy (HEA) and its nitride (HEAN) films were deposited by reactive radio-frequency magnetron sputtering in an Ar+N2 mixed atmosphere. The N2 flow ratio (N2/(Ar+N2)) was set as 0%, 10% and 30% to obtain HEA , HEAN0.06 and HEAN0.5 films respectively. All the thickness of the barrier films were set as 5 nm. Barrier properties were examined by annealing the structure over a temperature range of 700 to 900℃ for 30 min. From the analyses of diffusion behaviors, it was found that the electrical resistance of Si/HEA/Cu、Si/HEAN0.06/Cu and Si/HEAN0.5/Cu film stacks remained at a low level after annealing at 800℃, implying the good diffusion resistance of the HEA、HEAN0.06 and HEAN0.5. At the temperature up to 900℃, a Cu3Si crystalline phase appeared, and the electrical resistance obviously increased, indicating the failure of the barrier HEA、HEAN0.06 and HEAN0.5 as diffusion barriers. In addition, the HEA film especially has the high potential for the future IC development because of its lower resistivity (246 μΩ-cm) and amorphous structure.
URI: http://hdl.handle.net/11455/10502
其他識別: U0005-2108200711094000
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.