Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10524
標題: 砂質河段懸移床砂載之探討-以濁水溪下游為例
Suspended bed material load characteristics of sand-bed streams─Case study of lower Cho-Shui River
作者: 張浩肇
Chang, Hao-Chao
關鍵字: 變量流;unsteady flow;沖瀉載;床砂載;懸移床砂載濃度剖面;wash load;bed material load;sediment concentration profiles of the suspended bed material load
出版社: 土木工程學系所
引用: 1. 王尚毅,挾砂明流中的流移質運動,天津市水運學會報告,1959。 2. 郭朝雄等,濁水溪砂質 (沖積扇)河段輸砂特性研究 (一~五),行政院國科會防災科技研究報告,1984-1988。 3. 曾彥儒,濁水溪下游輸砂特性之研究,國立中興大學土木工程學系碩士學位論文,2007。 4. 楊志達,泥砂輸送理論與實踐,中國水利水電出版社,2000。 5. 錢寧、萬兆惠,泥砂運動力學,科學出版社,1992。 6. 盧昭堯等,台灣河川流量觀測技術之開發與應用 (一~三),台灣省水利處專題研究計畫報告,1995-1997。 7. 盧昭堯等,河道深槽沖淤量測及預測模擬變化潛勢評估 (以濁水溪為研究案例) (1/3~3/3),經濟部水利署水利規劃試驗所委託研究計畫成果報告,2003-2005。 8. 盧昭堯等,九二一地震後濁水溪下游輸砂關係之試驗研究 (1/2~2/2),經濟部水利署水利規劃試驗所委託研究計畫成果報告,2006-2007。 9. Ackers, P., and White, W. R. (1973). “Sediment transport: new approach and analysis.” Journal of the Hydraulic Division, ASCE, Vol. 99. No. HY11, Proceeding paper 10167, 2041-2060. 10. Bagnold, R. A. (1962). “Auto-suspension of transported sediment; turbidity.” Proc. Royal. Soc. London, Ser. A., Vol. 265, No. 1322, 314-319. 11. Chien, N. (1954). “The present status of research on sediment transport.” Proceedings of the ASCE, Vol. 80, 565-1-565-33. 12. Colby, B. R., and Hembree, C. H. (1955). “Computation of total sediment discharge, Niobrara river near Cody, Nebraska.” U.S. Geological Survey, Water-Supply Paper 1357. 13. Colby, B. R. (1964). “Practical computations of bed-material discharge,” Journal of the Hydraulics Division, ASCE, Vol. 90, No. HY2. 14. Coleman, N. L. (1981). “Velocity profiles with suspension sediment.” J. Hydraul. Research, Vol. 19, No. 3, 221-229 15. Chiu, C. L., Jin, W., and Chen, Y. C. (2000). “Mathematical models of distribution of sediment concentration.” Journal of Hydraulic Engineering, ASCE, Vol. 126, No. 1, 16-23. 16. Chiu, C. L., and Tung, N. C. (2002). “Maximum velocity and regularities in qpen-channel flow.” Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 4, 390-398. 17. Einstein, H. A. (1950). “The bed-load function for sediment transport in open channel flows.” U.S. Department of Argriculture, Soil Conservation Service, Technical Bulletin No. 1026. 18. Einstein, H. A., and Chien, N. (1954). “Second approximation to the solution of suspended-load theory.” University of California, Institute of Engineering Research, No. 3. 19. Einstein, H. A., and Chien, N. (1955). “Effects of heavy sediment concentration near the bed on velocity and sediment distribution.” MRD Sediment Ser. NO. 8, Univ. of California at Berkeley, Institute of Engineering Research, Berkeley, Calif. 20. Engelund, F., and Hansen, E. (1972). “A monograph on sediment transport in alluvial streams.” Teknisk Forlag, Copenhagen. 21. Garcia, M., and Parker, G. (1991). “Entrainment of bed sediment into suspension.” Journal of Hydraulic Engineering, ASCE, Vol. 117, No. 4, 414-435. 22. Lu, J. Y., Su, C. C., and Wang C. Y. (2006). “Application of a portable measuring system with acoustic Doppler current profiler to discharge observations in steep rivers.” Journal of Flow Measurement and Instrumentation, Vol. 17, No. 3, 179-192. 23. Lu, J. Y., Hong, J. H, Su, C. C., Wang, C. Y., and Lai, J. S. (2007), “Field measurements and simulation of bridge scour-depth variations during floods.” Journal of Hydraulic Engineering, ASCE. 24. Moliere, D. R., Evans,.K. G., Saynor, M. J., and Erskine, W. D. (2004) “Estimation of suspended sediment loads in a seasonal stream in the wet-dry tropics, Northern Territory, Australia.” Hydrological Processes, Vol. 18, 531-544. 25. Rubey, W. W. (1933). “Setting velocities of gravel, sand and silt particles.” American Journal of Science, Vol. 25, 325-338. 26. Rouse, H. (1937). “Modern conceptions of the mechanics of turbulence.” Transaction of the ASCE, Vol. 102, 4630. 27. Stokes, G. G. (1851). “On the effect of the internal friction of fluids on the motion of pendulums.” Transactions of the Cambridge Philosophical Society, Vol. 9, pt. 2, 8-106. 28. Shen, H. W. (1971). “River mechanics.” Volume I, P.O. Box 606, Fort Collins, Colorado, U.S.A. 29. Su, C. C., Lu, J. Y., and Hong, J. H. (2012). “A field investigation of the sediment transport characteristics of a high sediment load intermittent river in Taiwan.” Hydrological Processes. 30. Takahashi, T. (2006), “Debris flow: mechanics, prediction and countermeasures”. 31. van Rijn, L. C. (1984). “Sediment transport, part I: bed load transport.” Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 10, 1431-1456. 32. van Rijn, L. C. (1984). “Sediment transport, part II: suspended load transport.” Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 11, 1613-1641. 33. Wu, W., Wang, S. S.Y., and Jia, Y. (2000). “Nonuniform sediment transport in alluvial rivers.” Journal of Hydraulic Research, Vol. 38, No. 6, 427-434. 34. Wright, S., and Parker, G. (2004). “Flow resistance and suspended load in sand-bed rivers: simplified stratification model.” Journal of Hydraulic Engineering, ASCE, Vol. 130, No. 8, 796-805. 35. Yang, C. T. (1973). “Incipient motion and sediment transport.” Journal of the Hydraulics Division, ASCE, Vol. 99, No. HY10, Proceeding Paper 10067, 1679-1704. 36. Yang, C. T., Molinas A. and Wu B. (1996). “Sediment transport in Yellow River.” Journal of the Hydraulic Engineering, ASCE, Vol. 122, No. 5, 237-244.
摘要: 
本研究於濁水溪下游自強大橋砂質河段,就斷面渠化後河道,進行颱洪變量流水理及懸移載輸砂特性之探討。
以採樣瓶直接觀測法搭配螺旋流速儀,於斷面主深槽沿垂向進行多點取樣,成功測得2011年南瑪都颱風、2012年610梅雨大水及泰利颱風等三場颱洪事件,觀測流量範圍為390~4,250 m^3/s。
由本研究結合曾彥儒 (2007)資料,依據懸砂垂向個別粒徑變異數分析,界定研究河段沖瀉載劃分粒徑為0.074 mm,並進而推導懸移床砂載底床參考濃度(Cva(SBML))及泥砂交換係數與水流動量係數比值(β=εs/εm)等經驗公式,以配合Chiu and Tung (2002)明渠流流速及Chiu et al. (2000)泥砂理論,迅即掌握洪水水流及懸砂濃度剖面,提升經驗公式之適用性,俾利防災科技及防洪規劃設計之應用。

A series of field experiment was conducted to collect sediment discharges and hydraulic data during typhoon and heavy storm seasons at the Tzu-Chiang bridge of the lower Cho-Shui River after the river incision. The main objectives were to analyse the characteristics of the suspended bed material load and hydraulics of the unsteady flow for the sand-bed river reach.
Three sets of sediment transport data were successfully collected during Typhoons Nanmadol (8/30/2011) and Talim (6/20/2012), and the rain storms of 6/12/2012 and 6/13/2012. The observed discharge ranges from 390 to 4,250 m^3/s . Point suspended sediment samples were collected using the direct observation method with a simple sediment collecting bottle and a propeller-type velocimeter along the verticals at the main channel.
In conjunetion of Tsang’s (2007) field data, the dividing sediment size between the wash load and the bed material load was found to be 0.074 mm by using the variance analysis of vertical suspended load concentration distribution of the coefficient of variation individual particle sizes. Empirical formulas were derived for the reference concentration of suspended bed material load(Cva(SBML))and the ratio of diffusion coefficients for sediment transfer and momentum (β=εs/εm)to be adopted by Chiu and Tung’s (2002) velocity theory and Chiu et al.’s (2000) sediment concentration profiles theory. The empirical formulas could be applied to facilitate disaster prevention technology and flood control design.
URI: http://hdl.handle.net/11455/10524
其他識別: U0005-2408201212273400
Appears in Collections:土木工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-101-7099062048-1.pdf3.72 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.