Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10537
標題: 以射頻磁控濺鍍法製備矽鍺熱電薄膜與用於氫感測之研究
Silicon-Germanium thermoelectric thin films prepared by RF magnetron sputtering and their application on hydrogen gas sensing
作者: Tung, Kuan-Lin
童冠霖
關鍵字: 熱電薄膜;thermoelectric thin films;矽鍺薄膜;Seebeck係數;氫感測;感測器;碳纖維布;鉑觸媒;SiGe thin films;Seebeck coefficient;hydrogen gas sensing;senser;activated carbon fiber cloth;Pt catalyst
出版社: 材料科學與工程學系所
引用: 1. 池鳳東著,「實用氫化學」,北京/國防工業出版社,1996。 2. 黃鎮江著,「燃料電池」,第3板,滄海書局,2008。 3. 熱電材料應用簡介, http://tns.ndhu.edu.tw/~ykkuo/thermoelectric.pdf. 4. Y. M. Chang, C. L. Dai, T. C. Cheng, C. W. Hsu, ”Effect of annealing temperature for Si0.8Ge0.2 epitaxial thin films”, Applied Surface Science 254 (2008) 3105-3109. 5. K. Sawano, Y. Hirose, S. Koh, K. Nakagawa, T. Hattori, Y. Shiraki, ”Relaxation enhancement of SiGe thin layers by ion implantation into Si substrates”, Journal of Crystal Growth 251 (2003) 685–688. 6. J. A. Tsai, A. J. Tang, A. T. Noguchi and R. Teif : J. Electrochem. Soc. 142 (1995) 3220. 7. M. Strasser, R. Aigner, M. Franosch and G. Wachutka, ” Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining”, Sensors and Actuators A 97-98 (2002) 535-542. 8. E. V. Jelenkovic, K. Y. Tong, W. Y. Cheung, I. H. Wilson, S. P. Wong, M. C. Poon, ” Low temperature doping of poly-SiGe films with boron by co-sputtering”, Thin Solid Films 368 (2000) 55-60. 9. L. K. Teh, W. K. Choi, L. K. Bera W. K. Chim, ”Structural characterisation of polycrystalline SiGe thin film”, Solid-State Electronics 45 (2001) 1963-1966. 10. A. Matsuda, ”Thin-Film Silicon —Growth Process and Solar Cell Application—”, The Japan Society of Applied Physics 43 (2004) 7907-20. 11. F. Qiu, W. Shin, M. Matsumiya, N. Izu and N. Murayama, ” Hydrogen Sensor Based on RF-Sputtered Thermoelectric SiGe Film”, The Japan Society of Applied Physics 42 (2003) 1563-1567. 12. K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, N. Murayama, ”Micromechanical fabrication of low-power thermoelectric hydrogen sensor”, Sensors and Actuators B 108 (2005) 973–978. 13. W. Shin, K. Tajima, Y. Choi, N. Izu, I. Matsubara, N. Murayama, ”Planar catalytic combustor film for thermoelectric hydrogen sensor ”, Sensors and Actuators B 108 (2005) 455–460. 14. D. M. Rowe, ”CRC Handbook of Thermoelectrics”, CRC Press Boca Raton London New York Washington, D. C. 15. S. Kasap, ”Thermoelectric effects in metals : thermocouples”, Department of Electrical Engineering University of Saskatchewan Canada. 16. 朱旭山,「熱電材料與元件之原理與應用」,電子與材料雜誌,第22期,P79-80。 17. W. Thomson, ”On a mechanical theory of thermoelectric currents”, Proceedings of the Royal Society of Edinburgh 91 (1851). 18. A. E., ”Uber den Nutzeffect der Thermosaule”, Physikalische Zeitschrift 10 (1909) 560. 19. A. E., ”Elektrothermische Kalteerzeugung und Reversible Elektrische Heizung”, Physikalische Zeitschrift 12,191,1920. 20. L. H. Van Vlack, 「材料科學與工程」,第六版,李志偉、劉森源、張庭瑞譯,文京圖書有限公司,台北,1996,P498。 21. T. Massalski, CD ROM: Binary Alloy Phase Diagrams, ASM International, OH, USA, 1996. 22. G. P. Ru, X. P. Qu, Q. Gu, W. J. Qi, B. Z. Li, ”Boron and phosphorous diffusion in ion-beam-sputtering deposited SiGe films”, Materials Letters 57 (2002) 921-924. 23. T. J. King and K. C. Saraswat, ”A low-temperature(≦550 °C) silicon-germanium MOS thin-film transistor technology for large-area electronics”, IEDM Tech.Dig (1991) 567-570. 24. J. B. Rem, M. C. V.de Leuw, J. Hollerman and J. F. Verweij, ”Furnace and rapid thermal crystallization of amorphous GexSi1-x and Si for thin film transistors”, Thin Solid Films,296 (1997) 152-156. 25. E. V. Jelenkovic, K. Y. Tong, and Z. Sun, C. L. Mak, W. Y. Cheung, ”Properties of crystallized Si1-xGex thin films deposited by sputtering”, American Vacuum Society (1997) 2836-3841. 26. K. Sasaki, Y. Nabetani, H. Miyashita, T. Hata, ”Heteroepitaxial growth of SiGe films and heavy B doping by ion-beam sputtering”, Thin Solid Films 369 (2000) 171-174. 27. G. G. Jernigan, P. E. Thompson, ”The effect of Sb surfactant assisted growth on SiGe surface morphology”, Thin Solid Films 472 (2005) 16-19. 28. K. Tajima, W. Shin, N. Murayama, T. Itoh, N. Izu and I. Matsubara, ”Preparation of Phosphorus-Doped Si0.8Ge0.2 Thermoelectric Thin Film Using RF Sputtering with Induction Coil”, Journal of the Ceramic Society of Japan 113 8 (2005) 558-561. 29. F. Qiu, M. Matsumiya, W. Shin, N. Izu, N. Murayama, ” Investigation of thermoelectric hydrogen sensor based on SiGe film”, Sensors and Actuators B 94 (2003) 152–160. 30. I. Nakamura, T. Ajiki, and M. Isomura, ”Low Temperature Fabrication of Microcrystalline Silicon Germanium Films by RF Reactive Magnetron Sputtering”, Materials Research Society 910 (2006) . 31. I. Nakamura, T. Ajiki, H. Abe, D. Hoshi, M. Isomura, ” Formation of polycrystalline SiGe thin films by the RF magnetron sputtering method with Ar–H2 mixture gases”, Vacuum 80 (2006) 712–715. 32. 王光偉、茹國平、張建民、曹繼華、李炳宗,「濺射SiGe薄膜及其等時等溫退火效應」,半導體學報第27卷第5期。 33. W. K. Choi, L. K. Teh, L. K. Bera, and W. K. Chim, A.T.S Wee and Y. X. Jie, ”Microstructural characterization of rf sputtered polycrystalline silicon germanium films”, Journal of Applied Physics 91-1 (2002) 444-450. 34. Alfred Grill, “Cold Plasma in materiala Fabrication”, The Institute of Electrical and Electrical and Electronics Engineers,Inc., New York. 35. 陳建人等箸,「真空技術與應用」,行政院國家科學委員會精密,儀器發展中心,2001。 36. 吳權吉,「以反應性磁控濺鍍法製備矽化物氣體阻障之研究」,私立中原大學化學工程所碩士論文,2004。 37. M.Ohring, ”Materials science of thin films: deposition and structured, 2nd ed.”, Academic Press, San Diego, (2002) 497-507. 38. 柯賢文,「表面與薄膜處理技術」,全華圖書股份有限公司,P8-18~P8-19。 39. J. A. Thornton, ”High rate thick film growth”, Ann. Rev. Mater. Sci.,7 (1977) 239-260. 40. 吳朗編著,「感測器原理與應用」,全華科技圖書股份有限公司 ,1989。 41. 黃克定著,「感測與轉換器」,文笙書局總經銷,1997。 42. I. Lundstrom, ”Approaches and mechanisms to solid state based sensing”, Sens. Actuators. B-Chem (1996). 43. C. C.Liu, P. J. Hesketh, G. W. Hunter, ”Chemical microsensors”, Interface 13 (2004). 44. W. Shin, M. Matsumiya, N. Izu, N. Murayama, ” Hydrogen-selective thermoelectric gas sensor”, Sensors and Actuators B 93 (2003) 304–308. 45. W. Shin, M. Matsumiya, F. Qiu, N. Izu, N. Murayama, ” Thermoelectric gas sensor for detection of high hydrogen concentration”, Sensors and Actuators B 97 (2004) 344–347. 46. K. Tajima, F. Qiu, W. Shin, N. Sawaguchi, N. Izu, I. Matsubara and N. Murayama, ”Thermoelectric Properties of RF-Sputtered SiGe Thin Film for Hydrogen Gas Sensor”, Japanese Journal of Applied Physics 43-9A(2004) 5978–5983. 47. F. Qiu, W. Shin, M. Matsumiya, N. Izu, I. Matsubara, N. Murayama, ”Miniaturization of thermoelectric hydrogen sensor prepared on glass substrate with low-temperature crystallized SiGe film”, Sensors and Actuators B 103 (2004) 252–259. 48. G B. Marchwicka, S. Osadnik, E. Procibw and W. Mielcarek, ” Structure and morphology of Ge(Au) sputtered films with useful Seebeck effect”, Vacuum 50 (1998) 207. 49. 李哲瀚,「以射頻磁控溅鍍法製備矽鍺熱電薄膜」,國立中興大學材料科學與工程學系碩士論文,2009。 50. H. Makihara, A. Tabata, Y. Suzuoki, T. Mizutani, ”Effect of the hydrogen partial pressure ratio on the properties of μc-Si:H films prepared by rf magnetron sputtering”, Vacuum 59 (2000) 785-791. 51. K. Fukaya, A. Tabata, T. Mizutani, ”Dependence on gas pressure of μc-Si:H prepared by RF magnetron sputtering”, Vacuum 74 (2004) 561–565. 52. J. Kondo, A. Tabata, T. Kawamura, T. Mizutani, ”Dependence on substrate temperature of the film structure of μc-Si:H prepared by RF magnetron sputtering”, Vacuum 66 (2002) 409–413. 53. K. Nakajima, N. Usami, K. Fujiwara, Y. Murakami, T. Ujihara, G. Sazaki, T. Shishido, ”Melt growth of multicrystalline SiGe with large compositional distribution for new solar cell applications”, Solar Energy Materials & Solar Cells 72 (2002) 93–100. 54. K. Nakajima, N. Usami, K. Fujiwara, Y. Murakami, T. Ujihara, G. Sazaki, T. Shishido, ”Growth and properties of SiGe multicrystals with microscopic compositional distribution for high-efficiency solar cells”, Solar Energy Materials & Solar Cells 73 (2002) 305–320. 55. N. Usami, W. Pan, K. Fujiwara, T. Ujihara, G. Sazaki and K. Nakajima, ”Relationship between Device Performance and Grain Boundary Structural Configuration in a Solar Cell Based on Multicrystalline SiGe”, Japanese Journal of Applied Physics 43- 2B (2004) L 250–L 252. 56. M. Matsumiya, W. Shin, N. Izu, N. Murayama., ” Nano-structured thin-film Pt catalyst for thermoelectric hydrogen gas sensor”, Sensors and Actuators B 93 (2003) 309–315. 57. J. Zhang, W. Luan, H. Huang, Y. Qi, S. T. Tu., ”Preparation and characteristics of Pt/ACC catalyst for thermoelectric thin film hydrogen sensor”, Sensors and Actuators B 128 (2007) 266–272. 58. J. F.Moulder, W. F. Stickle, P. E. Sobol and K. D.Bomben, ”Handbook of X-ray photoelectron spectroscopy”, Physical electronics (1995).
摘要: 
本研究使用射頻磁控濺鍍法在矽晶片上製備N型SiGe熱電薄膜,實驗於摻雜磷之矽靶上貼鍺片來濺鍍,基板溫度由室溫至500℃,分別利用場發射掃描式電子顯微鏡,化學分析電子能譜儀、X光繞射儀、霍爾效應量測儀、熱電量測系統與氫感測量測系統作為分析儀器,探討表面形貌、膜厚、成分、結晶性、載子濃度、載子遷移率、電阻率、Seebeck係數、氫感測電壓等等分析。希望借由改變基板溫度能得到不同Seebeck係數之矽鍺薄膜,並用於實際氫感測試驗探討其結果。
氫感測試驗中使用簡單自組裝設備,並使用碳纖維布做為熱電氫氣感測器Pt觸媒之載體。通入氫氣濃度為3%。
實驗結果顯示,於基板溫度500℃,成份為Si92Ge8時的載子濃度2.5×1010 cm-3及電阻率2.0×106 Ω•cm,而其Seebeck係數為271 mV/K。氫感測結果顯示,越高的Seebeck係數有越高之感應電壓輸出,能產生最高160 mV之輸出訊號值。

N-type Silicon-germanium thermoelectric thin films were prpeared on silicon substrates the by RF magnetron sputtering process. The sputtering target was a phosphorous-doped silicon target attached with germanium chips. The substrate temperature were rared room temperature to 500℃ in a step of 100℃. We examined the microstructure, film thickness, composition, crystallinity, carrier concentiation, mobility, resistivity, Seebeck coefficient and H2 sensing voltage by field emission scanning electron microscopy, electron spectroscopy for chemical analysis, X-ray diffractometer, Hall effect measasurement, Seebeck coefficient measurement and hydrogen sensor measurement. By changing the substrate temperature, we expected to prepare SiGe thin films with different Seebeck coefficients, and used then in hydrogen sensing test.
We use a simple in-house system for hydrogen sensing. The activated carbon fiber cloth was utilized as a support for the Pt catalyst on thermoelectric sensor 3% hydrogen was inlet used in all tests.
The results showed that as the substrate temperature was 500℃, Si92Ge8 has a carrier concentration of 2.5×1010 cm-3, resistivity of 2.0×106 Ω•cm and Seebeck coefficient of 271 mV/K. The results of hydrogen sensing test show that sensing voltage increased with increasing Seebeck coefficient, and the maximum voltage signal is 160 mV.
URI: http://hdl.handle.net/11455/10537
其他識別: U0005-2506200714022100
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.